DEPARTMENT OF NATURAL RESOURCES

Chapter NR 219

ANALYTICAL TEST METHODS AND PROCEDURES

NR 219.03	Applicability Definitions Identification	of te	est proce-	Alternate test procedures Laboratory certification or re- gistration
	dures			

Note: A number of the references cited in this chapter are no longer in print. Copies of references which are out-of-print are available at any public library by inter-library loan.

NR 219.01 Purpose. The purpose of this chapter is to establish analytical test methods, preservation procedures, requirements for laboratories, and procedures applicable to effluent limitations for discharges from point sources as authorized by ss. 144.95 and 147.08 (1), Stats.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; am. Register, April, 1986, No. 364, eff. 8-28-86; am. Register, June, 1986, No. 366, eff. 7-1-86; am. Register, April, 1988, No. 388, eff. 5-1-88.

NR 219.02 Applicability. (1) The procedures prescribed herein shall, except as provided in s. NR 219.06, be used in the determination of concentrations and quantities of pollutant parameters as required for:

(a) An application submitted to the department for a permit under ch. 147, Stats.

(b) Reports required to be submitted by dischargers in accordance with the conditions of issued permits.

(2) Section NR 219.07 requires that laboratories conducting tests under this chapter be certified, registered, or approved under ch. NR 149, HSS 157 or 165.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; am. Register, April, 1986, No. 364, eff. 8-28-86; am. (1) (intro.), Register, June, 1986, No. 366, eff. 7-1-86.

NR 219.03 Definitions. As used in this chapter:

(1) "EPA" means the U.S. environmental protection agency.

(2) "Department" means the department of natural resources.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; am. (1), (2), (3) and (4m), Register, January, 1978, No. 265, eff. 2-1-78; r. and recr. Register, June, 1986, No. 366, eff. 7-1-86; r. and recr. (1), r. (3) and (4), Register, November, 1992, No. 443, eff. 12-1-92.

NR 219.04 Identification of test procedures. (1) ANALYTICAL TEST PRO-CEDURES. Parameters or pollutants, for which wastewater analytical methods are approved, are listed together with test procedure descriptions and references in tables A to E. Parameters or pollutants, for which sludge analytical methods are approved, are listed together with test procedure descriptions and references in table EM. Metals samples digestion procedures and references are listed in table BM. The discharge values for the listed parameters shall be determined by one of the standard analytical test procedures identified in a table under this subsection or by an alternate test procedure established under ss. NR 219.05 and 149.12.

(2) SAMPLE PRESERVATION PROCEDURES. Sample preservation techniques, container materials, and maximum allowable holding times for Register, February, 1996, No. 482

124 WISCONSIN ADMINISTRATIVE CODE

parameters identified in tables A to E are prescribed in table F. Sludge samples shall be preserved at the time of collection by cooling to 4° C where required. All samples requiring preservation at 4° C shall be cooled immediately after collection, and the required temperature maintained during shipping. Any person may apply for a variance from the prescribed preservation procedures applicable to samples taken from a specific discharge. Applications for variances may be made by letters to the regional administrator and shall provide sufficient data to assure that the variance does not adversely affect the integrity of the sample. The regional administrator will make a decision on whether to approve or deny a variance within 90 days of receipt of the application.

ĺ

(3) TEMPERATURE REPORTING PROCEDURES. Samples cooled with ice packs or not in direct contact with ice during shipping shall be cooled to 4° C prior to shipping, and a temperature blank shall be submitted with the samples. Samples cooled during shipping with ice packs may not be recorded as received on ice. Samples may be recorded as received on ice only if solid ice is present in the cooler at the time the samples are received. If the samples are not received on ice, the laboratory shall record one of the following at the time of receipt:

- (a) The temperature of an actual sample.
- (b) The temperature of a temperature blank shipped with the samples.
- (c) The temperature of the melt water in the shipping container.

Note: Copies of the publications referenced in Tables A - F are available for inspection at the offices of the department of natural resources, the secretary of state and the revisor of statutes. Many of these materials are also available through inter-library loan.

History: Cr. Register, June, 1986, No. 366, eff. 7-1-86; r. and recr. Tables B and E, Register, April, 1988, No. 388, eff. 5-1-88; am.; r. and recr. Tables A to F, Register, November, 1992, No. 443, eff. 12-1-92; am. (1), am. Tables A to F, Register, April, 1994, No. 460, eff. 5-1-94; am. (1) and (2), Tables A to F, cr. (3), Register, February, 1996, No. 482, eff. 3-1-96.

TABLE A

LIST OF APPROVED BIOLOGICAL TEST PROCEDURES FOR WASTEWATER

Par	arameter and Units Method ¹		EPA	Standard Methods 18th Ed.	USGS
Ba	cteria:				
1,	Coliform (fecal) number per 100 ml	MPN, 5 tube, 3 dilution; or, membrane filter (MF) ² , single step.	p132 ³ p124 ³	9221 E 9222 D	B-0050-854
2.	Coliform (fecal) in presence of chlorine number per 100 ml	MPN, 5 tube, 3 difution; or MF, single step ⁵	p132 ³ p124 ³	9221E 9222D	
3.	Coliform (total) number per 100 ml	MPN, 5 tube, 3 dilution; or, MF ² single step or two step	p114 ³ p108 ³	9221B 9222B	B-0025-854
4.	Coliform (total) in presence of chlorine, number per 100 ml	MPN, 5 tube, dilution; or, MF ² with enrichment.	p114 ³ p111 ³	9221B 9222B+B,5c	

Register, February, 1996, No. 482

DEPARTMENT OF NATURAL RESOURCES

125 NR 219

					INK 215	
Par	ameter and Units	Method ¹	EPA	Standard Methods 18th Ed.	USGS	
5.	Fecal strepto- cocci, number per 100 ml	MPN, 5 tube, 3 dilution; MF ² , or Plate count	p136 ³ p136 ³ p143 ³	9230B 9230C	B-0055-854	
Ent	teroviruses:					
6.	Enteroviruses in water, plaque	Absorption, elution, and organic flocculation,		Ch. 6 ⁶	9510 B,C,D,E	
	forming units per- liter,	followed by: Plaque assay (cell culture	Ch. 9 ⁶	9510G		
		infectivity)	Ch. 10 ⁶	9510G		
		Identification	Ch. 12 ⁶	9510G		
7.	Enteroviruses in	Beef extract elution, and	Ch. 7 ⁶	9510F		
	sludge, plaque forming units per	organic flocculation, followed by:		Ch. 9 ⁶	9510G	
	liter.	Plaque assay (cell culture infectivity)	Ch. 10 ⁶	9510G		
		Identification	Ch. 12 ⁶	9510G		
Μι	itagenicity:	·				
8.	Mutagenicity (revertants per liter)	Ames test, test strains TA97, TA98, TA100, and TA102.	Note 7			
	ute and Chronic xicity:					
9.	Toxicity, acute, fresh water	Daphnia and Ceriodaphnia, 48-h static mortality.	p 56 & 58 ⁸			
	organisms, effluent ¹⁰	Fathead minnow, 48-h static mortality, or 48 to 96-h flow-through mortality.	p 60 ⁸			
10.	Toxicity, chronic, fresh water	Fathead minnow larval survival and growth.	1000.09			
	organisms, per- cent effluent, ¹⁰	Fathead minnow embryo- larval survival and teratogenicity.	1001.0 ⁹			
		Ceriodaphnia survival and reproduction.	1002.0 ⁹			
		Selenastrum growth.	1003.0 ⁹			

TABLE A NOTES:

¹ The method used must be specified when results are reported.

 2 A 0.45 μm membrane filter (MF) or other port size certified by the manufacturer to fully retain organisms to be cultivated and to be free of extractables which could interfere with their growth.

³ Bordner, R.H., and J.A. Winter, eds. "Microbiological Methods for Monitoring the Environment, Water and Wastes", United States Environmental Protection Agency, EPA-600/8-78-017, 1978. Available from ORD Publications, CERI, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268.

⁴ Britton, L.J., and P.E. Greeson, eds. "1988 Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples", edited by et al., U.S. Geological Survey, Techniques of Water-Resources Investigation (USGS TWRI), Book 5 chapter A4, Laboratory analysis, 1977. Available from U.S. Geological Survey, 604 S. Pickett Street, Alexandria, VA 22304.

⁵ Because the MF technique usually yields low and variable recovery from chlorinated wastewaters, the Most Probable Number method will be required to resolve any controversies.

Register, February, 1996, No. 482

.....

126 WISCONSIN ADMINISTRATIVE CODE

- ⁶ Berg, G., R.S. Safferman, D.R. Dahling, D. Berman, and C.J. Hurst, 1984. USEPA Manual of Methods for Virology. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA/600/4-84/013. (Chapter 9 revised January 1987; Chapter 10 revised December 1987; Chapter 12 revised May 1988; Chapter 7 revised September 1989).
- ⁷ Williams, L.R., and J.E. Preston, eds. 1983. Interim Procedures for Conducting the Salmonella/Microsomal Mutagenicity Assay (Ames Test). Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Las Vegas, Nevada. EPA/600/4-82/068.
- ⁸ Peltier, W.H., and C.I. Weber, eds. September 1991. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA/600/4-90/027.
- ⁹ Weber, C.I., W.H. Peltier, T.J. Notberg-King, W.B. Horning, H. F.A. Kessler, J.R. Menkedick, T.W. Neiheisel, P.A. Lewis, D.J. Klemm, Q.H. Pickering, E.L. Robinson, J.M. Lazorchak, L.J. Wymer, and R.W. Freyberg. 1989. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Surface Waters to Freshwater Organisms, Second Edition, Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. (EPA/600/4-89/001).
- ¹⁰ Compliance monitoring must be performed in accordance with the specifications in "Guldance Manual for the Certification and Registration of Laboratories Conducting Effluent Toxicity Testing", Wisconsin Department of Natural Resources, May 1992. Available from the Department of Natural Resources Office of Technical Services, P O Box 7921, Madison, WI 53707.

Register, February, 1996, No. 482

TABLE B	
LIST OF APPROVED INORGANIC TEST PROCEDURES	FOR WASTEWATER

Para 	meter. Units & Methods	EPA ¹	SW-846 ^{11.7}	Standard Methods ^{2,2m}	ASTM ³	USGS ¹	Other	
1.	Acidity, as CaCO3, mg/L, Electrometric end point or phenolphthalein end point	305.1		2310 B(4a)	D1067-92			
2.	Alkalinity, as CaCO ₃ , mg/L: Electrometric or colorimetric: Titration to pH 4.5, manual Or automated	310.1 310.2		2320 B	D1067-92	1-1030-85	973.43 ⁵	
3.	Aluminum, mg/L: Digestion ⁶ followed by: AA direct aspiration ^{6m} , AA furnace,	202.1 202.2 or 200.9 ^{1g}	7020	3111 D 3113 B		1-3051-85		
	Inductively coupled plasma (ICP) ^{6m} .	200.7 ¹ #	6010A	3120 B				
	Inductively coupled plasma- mass spectrometry (ICP-MS), Direct current plasma	200.8 ^{1g}	6020		D4190-82(88)		Note 36	
	(DCP) ^{fin} , or Colorimetric (Eriochrome cya- nine R)			3500-AI D				1
4.	Ammonia (as N), mg/L: Man- ual distillation ⁸ (at pH 9.5): Followed by	350.2		4500-NH ₃ B			973.49 ⁵	

DEPARTMENT OF NATURAL RESOURCES NR 219

.

127

.

Para	meter, Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USCS'	Other	
	Nesslerization,	350.2		4500-NH ₃ C	D1426-89(A)	1-3520-85	973.46 ⁵	
	Titration. Electrode,	350.2 350.3		4500-NH ₃ E 4500-NH ₃ F & G	D1426-89(B)			
	Automated phenate, or	350.1 ^{1m}		4500-NH ₃ H	D1420-03(D7	1-4523.85		
	Automated electrode					1 1020100	Note 9	
5.	Antimony, ug/L:							
	Digestion ⁶ followed by:							
	AA direct aspiration6m.	204.1	7040	3111 B				
	AA furnace,	200.9 ¹ *	7041	3113 B				
	AA (gaseous borohydride),	000 714	7062	2100 P				
	Inductively coupled plasma ^{6m} ,	200.7 ¹ ^g	6010A	3120 B				
	or Inductively coupled plasma-	200.8 ^{1g}	6020					
	mass spectrometry	200.0	0020					
6.	Arsenic, ug/L:							
	Digestion ⁶ followed by	206.5		A 1 7				
	AA (gaseous hydride).		7061A	3114 B ³⁷	D2972-88(B)	1-3062.85		
	AA (gaseous borohydride). AA furnaçe,	206.2 or	7062 7060∧	3113 B	D2972-88(C)			
	AA furnaçe,	200.9 ¹ ×	1000/1	3113 5	D2912-08(C)			
	Inductively coupled plasma ^{6m} .	200.7 ¹ ×	6010A	3120 B				
	Inductively coupled plasma-	200.8 ¹ %	6020					
	mass spectrometry.							
	Or, colorimetric (SDDC)			3500-As C	D2972-88(A)	I-3060-85		
7.	Barium, mg/L:							
	Digestion ⁶ followed by:							
							~	
	· · · ·							

Parameter, Units & Methods		EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTMS	USCS ⁴	Other
	AA direct aspiration ^{6m} . AA furnace, Inductively coupled plasma ^{6m} . Inductively coupled plasma-	208.1 208.2 200.7 ¹ # 200.8 ¹ #	7080A 7081 6010A 6020	3111 D 3113 B 3120 B	D4382-91	I-3084-85	
	mass spectrometry, or Direct current plasma ^{6m}						Note 36
8.	Beryllium, mg/L: Digestion ⁶ followed by:						
	AA direct aspiration,	210,1	7090	3111 D	D3654-(88)(A)	I-3095-85	
	AA furnace,	210,2, or 200,9 ^{1g}	7091	3113 B	D3645(88)(B)		
	Inductively coupled plasma,	200.7 ^{1g}	6010A	3120 B			
	Inductively coupled plasma- mass spectrometry	200.8 ^{1g}	6020				
	Direct current plasma, or				D4190-82(88)		Note 36
	Colorimetric (aluminon)			3500-Be D			
9.	Biochemical oxygen demand (BOD ₅), mg/L;						
	Dissolved Oxygen Depletion			5210 B		I-1578-78 ¹⁰	973.443 ⁵
10.	Boron, mg/L:						
	Colorimetric (curcumin),	212.3		4500-B B		I-3112-85	
	Inductively coupled plasma, or Direct current plasma	200.718	6010A	3120 B			
					D4190-82(88)		Note 36

1977 - Campbell Control of Contro

Andress of Andrews Statements of Andre

1997 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

and them

and the second second

DEPARTMENT OF NATURAL RESOURCES NR 219 129

- <u>-</u> -

Register,
, February,
1996,
No.
482

>araı	meter. Units & Methods	EPAI	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USGS4	Other
1.	Bromide, mg/L: Titrimetric	320.1			D1246-82(88) (C)	I-1125-85	· p.\$44 ¹²
	Ion Chromatography	300.0 ^{1m}	9056				
2.	Cadmium-Total ⁶ , mg/L: Digestion ⁶ followed by:						
	AA direct aspiration ^{6m} .	213.1	7130	3111 B or C	D3557-90 (A or B)	I-3135-85 or I- 3136-85	974,275
	AA furnace.	213.2, or 200.9 ¹⁸	7131A	3113 B	D3557-90(D)		
	Inductively coupled plasma ^{6m} Inductively coupled plasma- mass spectrometry	200.7 ^{1g} 200.8 ^{1g}	6010A 6020	3120 B		I-1472-85	
	Direct current plasma ^{6m} , Voltametry ¹³ , or				D4190-82(88) D3557-90(C)		Note 36
	Colorimetric (Dithizone)			3500-Cd D			
3.	Calcium, mg/L: Digestion ⁶ followed by:						
	Atomic absorption, Inductively coupled plasma.	215.1 200.7 ^{1g}	7140 6010A	3111 B 3120 B	D511-92(B)	1-3152-85	Note 36
	Direct current plasma, or EDTA titration	215.2		3500-Ca D	D511-92(A)		Note 36
4.	Carbonaceous Biochemical oxygen						
	demand (CBOD ₅), mg/L: with nitrification inhibitor ¹⁴			5210 B			
	\sim						~
	•						· • •

WISCONSIN ADMINISTRATIVE CODE

Para	meter. Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USGS ¹	Other
15,	Chemical oxygen demand (COD), mg/L:						
	Closed reflux Titrimetric			5220 C or D			Notes 15 & 16
		410.1 410.2 410.3		5220 B	D1252-88(A)	I-3560 or I- 3562-85	973.46 ⁵
	Automated and manual Spectrophotometric	410.3 ^{1m}			D1252-88(B)	I-3561-85	
16.	Chloride, mg/L:						
	Titrimetric (silver nitrate) or		9253	4500-Cl- B	D512-89(B)	1-1183-85	
	Mercuric nitrate).	325.3	9252A	4500-C1- C	D512-89(A)	I-1184-85	973.51 ⁵
	Colorimetric (ferricyanide). manual or automated, or					I-1187-85	
		325.1 or 325.2	9250	4500-Cl- E		I-2187-85	
	Ion chromatography	300.0 ^{1m}	9056				
17.	Chlorine – Total residual, mg/ L:						
	amperometric,	330.1		4500-Cl D	D1253-86(92)		
	Starch End point direct	330.3		4500-CI B			
	Back Titration either end point ¹⁷ ,or	330.2		4500-CI C			
	DPD-FAS,	330.4		4500-Cl F			
	Spectrophotometric, DPD; or	330.5		4500-Cl G			
	Electrode			4500-Cl I			Note 18

 $\widehat{}$

.

DEPARTMENT OF NATURAL RESOURCES NR 219 131

<u>,</u>

.

 \sim

Para	neter, Units & Methods	EPA	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USGS ⁴	Other	132
18.	Chromium VI dissolved, ug/L: 0.45 micron filtration with:							NR 219
	Extraction and atomic absorp- tion.	218.4	7197	3111 A		I-1232-85		Ŧ
	Coprecipitation and atomic absorption,		7195					/ISC
	Differential pulse po- larography,		7198					WISCONSIN
	Colorimetric (Diphenylcarba- zide), or		7196A	3500-Cr D	D1687-92(A)	1-1230-85	307B ¹⁹	
	Ion Chromatography	218.6 ^{1g}						AD
19.	Chromium, mg/L: Digestion ⁶ (optional extrac- tion) followed by:	,						ADMINISTRATIVE
	AA direct aspiration ^{6m} . AA chelation extraction,	218.1 218.3	7190	3111 B 3111 C	D1687-92(B)	1-3236-85	974.24 ⁵	RA
	AA furnace.	218.2, or 200.9 ¹ ^g	7191	3113B	D1687-92(C)			IVI
	Inductively coupled plasma ^{6m} . Inductively coupled plasma- mass spectrometry,	200.7 ^{1g} 200.8 ^{1g}	6010A 6020	3120B				E CODE
	Direct current plasma ^{6m} , or Colorimetric (diphenylcarba- zide),			3500-Cr D	D4190-82(88)		Note 36)E

.

Para	meter, Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2.2m}	ASTM ³	USGS ¹	Other
20.	Cobalt, mg/L: Digestion ⁶ followed by:	-					
	AA direct aspiration.	219.1	7200	3111 B (A or B)	D3558-90(A or B)	I-3239-84	
	AA furnace, or	219.2. or 200.9 ¹ 8	7201	3113 B	D3558-90(C)		
	Inductively coupled plasma, or Inductively coupled plasma- mass spectrometry	200.7 ¹ * 200.8 ¹ *	6010A 6020	3120 B			
	Direct current plasma				D4190-82(88)		Note 36
21.	Color, Platinum Cobalt units or dominant wavelength hue, luminance, purity:						
	Colorimetric, ADMI	110.1		2120 E			Note 20
	Platinum cobalt; or	110.2		2120 B		I-1250-85	
	Spectrophotometric	110.3		2120 C			
22.	Copper. mg/L: Digestion ⁶ followed by:						
	AA direct aspiration ^{6m} ,	220,1	7210	3111 B or C	D1688-90(A or B)	I-3271-85 or I- 3270-85	974.27 ⁵
	AA furnace,	220.2 or 200.9 ^{1g}	7211	3113 B	D1688-90(C)		
	Inductively coupled plasma ^{6m} Inductively coupled plasma- mass spectrometry	200.7 ¹ # 200.8 ¹ #	6010A 6020	3120 B			
	Direct current plasma ^{6m} ,				D4190-82(88)		Note 36

DEPARTMENT OF NATURAL RESOURCES NR 219

133

Register, February, 1996, No. 482

.

المريبة الم

1000 No. 100 and a second (1) A state of the second s

Comments of States of Street

t There

Paran	neter, Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2.2m}	ASTM ⁸	USGS ⁴	Other	
	Colorimetric (Neocuproine), or Bicinchoninate			3500-Cu D or E			Note 21	NR 219
23.	Cyanide - Total, ug/L: Manual distillation with MgCl ₂			4500-CN-C				ot M
	Followed by: titrimetric. Manual or Automated ²² spectrophoto- metric, or	335.2 335.3	9010A 9010A	4500-CN-D 4500-CN-E	D2036-91(A)	1-3300-85		COINS
	Semi-automated colorimetry	335.4 ^{1m}	9012					IN
24.	Cyanide amenable to chlorina- tion, ug/L_{2} Manual distillation with MgC_{12} followed by titrimetric, manual or automated	235,1		4500-CN-G	D2036-91(B)			WISCONSIN ADMINISTRATIVE
	spectrophotometric		9010A					SIL
25.	Fluoride - Total, mg/L: Manual distillation8 Followed by manual or automated electrode,	340.2		4500-F-B 4500-F-C	D1179-88(B)	I-4327-85		CALIA F
	SPADNS, Ion chromatography. Or automated complexone	340.1 300.0 ^{1m} 340.3	9056	4500-F-D 4500-F-E	D1179-88(A)			ACOD 5
26.	Gold. mg/L: Digestion ⁶ followed by:							E
	\sim							
	1						- 1000 C	

Para	meter. Units & Methods	EPA ¹	SW-846 ^{11,2}	Standard Methods ^{2,2m}	ASTM ³	USGS ¹	Other
	AA direct aspiration AA furnace. Direct current plasma, or Inductively coupled plasma	231.1 231.2 200.7 ¹ ^g	6010A	3111 B 3113 B			Note 36
27.	Hardness - Total as CaCO ₃ ,	200.1**	001074				•
	mg/L: Automated colorimetric. EDTA titration, or the sum of Ca and Mg as their respective carbonates (by ICP	130.1 130.2		2340 C	D1126-86(92)	I-1338-85	973.52B ⁵
	or AA direct aspiration) (See Parameters 13 and 33)			2340 B			
28.	Hydrogen ion (pH), pH units; Electrometric Measurements or Automated Electrode	150.1	9040B	4500-H + B	D1293-84(90) (A or B)	í-1586-85	973.41 ⁵ Note 23
29.	Iridium, ug/L: Digestion ⁶ followed by: AA direct aspiration, AA furnace, or Inductively coupled plasma	235.1 235.2 200.7 ^{1g}	6010A	3111 B			
30.	fron. mg/L: Digestion ⁶ followed by:						

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A

.

DEPARTMENT OF NATURAL RESOURCES NR 219 134-1

 \sim

 \sim

ł

4

Para	meter, Units & Methods	ЕРА1	SW-846 ^{11,7}	Standard Methods ^{2.2m}	ASTM ³	USGS ¹	Other	134-2
	AA direct aspiration ^{tim} .	236.1	7380	3111 B or C	' D1068-90 (A or B)	I-3381-84	973.275	NR 219
	AA furnace,	236.2 or 200.9 ¹ ^g	7381	3113 B	D1068-90(C)			61
	Inductively coupled plasma ^{dm} .	200.7 ^{1×}	6010A	3120 B				
	Direct current plasma ^{6m} , or				D4190-82(88)		Note 36	8
	Colorimetric (Phenanthroline)			3500-Fe D	D1068-90(D)		Note 24	IS
31.	Kjeldahl nitrogen - Total (as N), mg/L:							WISCONSIN
	Digestion and distillation	351.3		4500-N org B or C	D3590-89(A)			AISI V
	Followed by titration	351.3		4500-NH ₃ E	D3590-89(A)		937.46 ^L	
	Nesslerization or	351.3		4500-NH ₃ C	D3590-89(A)			S.
	Electrode,	351.3		4500-NH ₃ F or G				
	Automated phenate.	351.1		4500-NH ₃ H		I-4551-78 [×]		5
	Semi-automated block di- gester.	351.2 ^{1m}		-	D3590-89(B)			INI
	Or potentiometric	351.4			D3590-89(A)			ST
32.	Lead. mg/L: Digestion [#] followed by:							ADMINISTRATIVE
	AA direct aspiration ^(im) ,	239,1	7420	3111 B or C	D3559-90 A or B	1-3399-90	- 974.27 ⁵	IVE
	AA furnaçe,	239.2 or 200.9 ¹ ^K	7421	3113 B	D3559-90(C)			CODE
	Inductively coupled plasma ^{6m} ,	200.7 ¹ ×	6010A	3120 B				H
	Inductively coupled plasma- mass spectrometry	200.8 ¹ ×	6020				·	Ĕ

 \sim

				•				
Paran	neter, Units & Methods	EPA	SW-846 ^{11,7}	Standard Methods ^{2.2m}	ASTM ³	USGS ¹	Other	
	Direct current plasma ^{6m} . Voltametry ¹³ or Colorimetric (Dithizone)			3500-Pb D	D4190-82(88) D3559-90(C)		Note 36	
33.	Magnesium, mg/L: Digestion ⁶ followed by: Atomic absorption, Inductively coupled plasma, Direct current plasma, or Gravimetric	242.1 200.7 ^{1µ}	7450 6010A	3111 B 3120 B 3500-Mg D	D511-92(B)	1-3447-85	974.27 ⁵ Note 36	
34.	Manganese, mg/L: Digestion ⁶ (ollowed by: λΛ direct aspiration ^{6m} .	243,1	7460	3111 B	D858-90 (A or B)	I-3454-85	974.27 ⁵	
	AA furnace,	243.2 or 200.9 ¹ ^µ	7461	3113 B	D858-90(C)			
	Inductively coupled plasma ^{6m} . Inductively coupled plasma- mass spectrometry,	200.7 ¹ ^K 200.8 ¹ ^K	6010A 6020	3120 B				
	Direct current plasma ^{6m} . Colorimetric (Persullate), or Periodate			3500-Mn D	D4190-82(88)		Note 36 920,203 ⁵ Note 25	
35. 35m.	Mercury - Total ⁶ , ug/L: Cold vapor AA, manual or automated, or Mercury - Hg(II) and organo- mercurials, ug/L:	245.1 ¹ * 245.2	7470A	3112 B	D3223-91	I-3462-85	977.226	

•

DEPARTMENT OF NATURAL RESOURCES NR 219 NR 219

 $\sum_{i=1}^{n}$

)

Parar	neter, Units & Methods	EPA'	SW-846 ^{11.7}	Standard Methods ^{2.2m}	ASTM ³	USGS4	Other
	HPLC with electrochemical detection	245.3 ^{1g}					
36.	Molybdenum, mg/L:						
	Digestion ⁶ followed by:	246.1	7480	3111 D		I-3490-85	
	AA direct aspiration. AA furnace.	246.2	7481	3113 B		1-0450-05	
	Inductively coupled plasma,	200.7 ¹ ^g	6010A	3120 B			
	Inductively coupled plasma-	200.8 ¹ ^k	6020	6120 5			
	mass spectrometry, or Direct current plasma						Note 36
37.	Nickel, mg/L: Digestion ⁶ followed by:						
	AA direct aspiration ^{6m} ,	249.1	7520	3111 B or C	D1886-90 (A or B)	· I-3499-85	
	AA furnace,	249.2 or 200.9 ^{1g}		3113 B	D1886-90(C)		
	Inductively coupled plasma ^{6m} ,	200.7 ¹⁸	6010A	3120 B			
	Inductively coupled plasma- mass spectrometry,	200.8 ^{1g}	6020				
	Direct current plasma6m, or				D4190-82(88)		Note 36
	Colorimetric (Heptoxime)			3500-Ni D			
38.	Nitrate (as N1, mg/L:						
	Brucine sulfate, or	352.1					973.50 ⁵ , 419D ¹⁹
	Nitrate-nitrite N minus Ni- trite N						
	see parameters 39 and 401						

134-4 WISCONSIN ADMINISTRATIVE CODE

 $\overline{}$

•

Parai	meter, Units & Methods	EPA	SW-846 ^{11,7}	Standard Methods ^{2.2m}	ASTM ³	USCS4	Other
	Ion chromatography	300.0 ^{1m}	9056				
39.	Nitrate-nitrite (as N), mg/L: Cadmium reduction, manual or automated, or automated hydrazine Ion chromatography	353.3 353.2 ^{1m} 353.1 300.0 ^{1m}	9056	4500-NO3 E 4500-NO3 F 4500-NO3 H	D3867-90(B) D3867-90(A)	I-4545-85	
40.	Nitrite (as N), mg/L: Spectrophotometric, manual or automated (Diazotization), or Ion chromatography ³⁹	354.1 300.0 ^{1m}	9056	4500-NO2 B		I-4540-85	Note 27
41.	Oil and grease-Total recover- able, mg/L: Gravimetric (freon extraction) Gravimetric (hexane extrac- tion)	413.1 1664	9070	5520 B			
42.	Organic carbon - Total (TOC), mg/L: Combustion or oxidation, Persulfate oxidation	415.1 415.21 ^m	9060	5310 B or D 5310 C	D2579-85 (A or B)		973.47 ⁵ p.142 ⁶
43.	Organic nitrogen (as N), mg/ L: Total Kjeldahl N (Parameter 31)			. –			

U. U. U.

.....

100 Total 100

Register, February, 1996, No. 482

DEPARTMENT OF NATURAL RESOURCES 134-5 NR 219

····

 \sim

Parai	neter. Units & Methods	EPA ¹	SW-846 ^{11.7}	Standard Methods ^{2,2m}	ASTM ³	USCS4	Other	
	minus ammonia N (Parameter 4)							NR 219
14.	Orthophosphate (as P), mg/L: Ascorbic acid method, automated	365.1		4500-P F		I-4601-85	973.565	
	Or manual single reagent or Manual two reagent, or	365.2 365.3		4500-P E	D515-88(A)		973.55 ⁵	
	Ion chromatography	300,0 ^{1m}	9056					
5.	Osmium, ug/L: Digestion ⁶ followed by: AA direct aspiration, AA furnace, or	252.1 252.2	7550	3111 D		1		
	Inductively coupled plama	200.7 ^{1g}	6010A					
6.	Oxygen, dissolved, mg/L: Winkler Azide modification Or electrode	360.2 360.1		4500-0 C 4500-0 G	D888-92(A) D888-92(B)	I-1575-7810 I-1576-7810	973.45B ⁵	
7.	Palladium, mg/L: Digestion ⁶ followed by: AA direct aspiration,	253,1		3111 B				
	AA (urnace, Direct current plasma, or Inductively coupled plasma	253.2 200.7 ¹ *	6010A				Note 36	
8.	Phenols, ug/L: Manual distillation ²⁶ Followed by manual	420.1 420.1	9065	5530 B 5530 D			Note 29	

 $\overline{}$

Parar	neter. Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USGS ⁴	Other	DEPARTMENT
	Or automated ²² colorimetric $(4AAP)$, or	420.2	9066				Note 29	ART
	Semi-automated colorimetric	420.4 ^{1m}						ME
49.	Phosphorus (elemental), mg/L: Gas-Liquid ehromatography						Note 30	
50.	Phosphorus - Total, mg/L: Persulfate digestion Followed by manual or	365.2 365.2 or	,	4500-P B,5 4500-P E			973.55 ⁵	OF NA
	Automated ascorbic acid Reduction, or semi-automated block digestor	365.3 365.1 ^{1m} 365.4		4500-P F	D515-88 (A)	I-4600-85	973.565	NATURAL I
\$1.	Platinum, mg/L: Digestion ⁶ followed by: AA direct aspiration,	255.1		3111 B				RESOURCES
	AA furnace. Direct current plasma, or Inductively coupled plasma	255.2 200.7 ^{1g}	6010A				Note 36	RCES
52.	Potassium, mg/L: Digestion [#] followed by: Atomic absorption, Inductively coupled plasma,	258.1 200.7 ¹ *	7610 6010A	3111 B 3120 B		1-3620-85	973.535	
	Flame photometric, or Colorimetric (cobalt nitrate)			3500-K D			317B ¹⁹	134-7

. .

Register, February, 1996, No. 482

and the second second second

and some

A CONTRACTOR OF A CONTRACTOR O

		1			
		and and a second s			1.1
- ÷					
1					- 1 N N
	1				
1		1 :	1.11	•	1.11
÷			1.1.1		
		1.1			이 가슴 가슴
					11 A.
					이 아이
1.1					
1		11			19 to 1
÷					이 가슴 옷
- E.				. :	
		11.		1	
- 3		- 1 t	1.1		
	1		1 1 1		
			1.1		1111
			1.1		
	· · ·				
	1	1 :		-	
		1.1	1.1		1 - E
	1		1.1		14 C
				1	- 1 - 1 - A - 1
	÷			19	
	· · ·	÷	1.1		
			1.14	4.	이 가 같을 수
1			(1) A starting of the start		- 4 1 4
		11			
					a dat
			- 1 - 1 - 1	18	
		· · :	- 1. I		
			1.1		
				·····	
		1.1		1.1	
	-				
		1.1	- 1.4	-	
1		1.1	1.1		19 E - E -
			111	1	
				1	
	- E .		이 문제		
1.		1.11			이 가슴 물건이
				1	
1					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1	1	1.		1	
					이 이 이 아이 아
	- 1	1.11	1.1	1	10 A 1
1					18.55
		1.1			1 1 1
			11		14 E
1.1		1.1			
			1.1		
	-	1.1			
			111		이 아이 관계
1.1		1.1		1	
1					
				1	
				-	
1					
1.1				1	
		1:	111	- 1	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
1					
		11	1.1		20 C
1		1.1	1.1		13 B
		1	11.1	1	
		1 :			(金) (二)
1	1.1		1.1.1	÷	
		1.1			
		1	111		
	1.1	1:	111		11 A.
1		1:		19	
		1.1	11.1	1	19 A.
		11	1.11		
		1.1		÷.	
		11			5 - E

Regist	Para	imeter, Units & Methods	EPAt	SW-846 ^{11.7}	Standard Methods ^{2,2m}	ASTM ³	USGS ⁴	Other	_
Register, February, 1996, No. 482	53.	Residue - total, (total solids), mg/L: Gravimetric 103-105°C	160.3		2540 B		I-3750-85		
ry, 1996,	54.	Residue - filterable, (TDS), mg/L: Gravimetric, 180°C	160.1		2540 C		1-1750-85		
No. 482	55.	Residue - nonfilterable, (TSS), mg/L: Gravimetric, 103-105°C post washing of res- idue	160.2		2540 D		1-3765-85		
	56.	Residue - settleable, mg/L: Volumetric (Imhoff cone) or gravimetric	160.5		2540 F				
	57.	Residue - volatile mg/L; Gravimetric, 550°C	160.4		2540 E38		I-3753-85		
	58.	Rhodium, ug/L: Digestion ⁶ followed by: AA direct aspiration, AA furnace, or Inductively coupled plasma	265.1 265.2 200.7 ¹ g	6010A	3111 B				
	59.	Ruthenium, ug/L: Digestion ⁴ followed by: ΛΑ direct aspiration, ΛΑ furnace, or	267.1 267.2		3111 B				

134-8 NR 219

WISCONSIN ADMINISTRATIVE CODE

Inductively coupled plasma 200.7 ¹ % 6010A Selenium, ug/L: Digestion ⁶ followed by: AA furnace, 270.2 or 7740 3113 B 200.9 ¹ % 6010A 3120 B Inductively coupled plasma- mass spectrometry, or AA gaseous hydrole, 7741A 3120 B Silica - Dissolved, mg/L: 0.45 micron filtration: Pollowed by manual or 370.1 Automated colorinetric in Inductively coupled plasma ⁴ 200.7 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 7761A 3111 B or C Inductively coupled plasma ⁴ 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 7761A 3113 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Digestion ⁶ followed by: AA furnace, 200.9 ¹ % 6010A 3120 B Silver 31, mg/L: Silver 31, mg/L:	Parar	neter. Units & Methods	EPA	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USCS ⁴	Other
Digestion 6 followed by: AA furnace, $200,9^{18}$ 7740 $200,9^{18}$ 3113 B $200,9^{18}$ Inductively coupled plasma inductively coupled plasma mass spectrometry, or AA (gaseous hydride) $200,7^{18}$ $6010A$ 6020 3120 B61.Silica - Dissolved, mg/L: 0.45 micron filtration: Followed by manual or inductively coupled plasma $7741A$ 3114 B 37 $D3859-88(A)$ $I-3667-85$ 62.Silica - Dissolved, mg/L: 0.45 micron filtration: Followed by manual or inductively coupled plasma 370.1 $4500-8i$ D $D859-88$ $1-1700-85$ 62.Silver31, mg/L: Digestion followed by: AA direct aspiration, AA direct aspiration, Ad formace, Colorimetric (Dithizone), Inductively coupled plasma, 200.9 ¹⁸ $7761A$ 3112 B $1-3720-85$ 973.27^6 61.Silver31, mg/L: Digestion followed by: AA direct aspiration, Inductively coupled plasma, 200.9 ¹⁸ $7761A$ 3113 B $319B^{19}$ 62.Silver31, mg/L: Digestion followed by: AA direct aspiration, Inductively coupled plasma, 200.9 ¹⁸ $7761A$ 3112 B $1-3720-85$ 973.27^6 61.Jinductively coupled plasma, Inductively coupled plasma, 200.8 ¹⁸ $6010A$ 3120 B $1-3720-85$ 973.27^6		Inductively coupled plasma	200.71*	6010A				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.							
Inductively coupled plasma- mass spectrometry, or AA (gaseous hydride) 200.8 ^{1g} 6020 mass spectrometry, or AA (gaseous hydride) 7741A 3114 B ³⁷ D3859-88(A) I-3667-85 Silica - Dissolved, mg/L: 0.45 micron filtration: Followed by manual or automated colorimetric 370.1 4500-Si D D859-88 I-1700-85 Molybiosilicate, or Inductively coupled plasma ⁶ 200.7 ^{1g} 6010A 3120 B I-2700-85 973.27 ⁶ Siles Sileral (Dispetion followed by: AA direct aspiration, AA furnace, Colorimetric (Dithizone), Inductively coupled plasma, 200.7 ^{1g} 7760A 3111 B or C I-3720-85 973.27 ⁶ 319B ¹⁹ 319B ¹⁹ 319B ¹⁹ 319B ¹⁹ 319B ¹⁹ 319B ¹⁹		AA furnace,		7740	3113 B			
or AA (gaseous hydride) $7741A$ $3114 B^{37}$ D3859-88(A) I-3667-85 \$1. Silica - Dissolved, mg/L: 0.45 micron filtration: Followed by manual or automated colorimetric (Molybdosilicate), or Inductively coupled plasma ⁶ 370.1 $4500-Si D$ D859-88 $1-1700-85$ \$2. Silver31, mg/L: Digestion ⁶ followed by: AA direct aspiration, AA furnace, Colorimetric (Dithizone), Inductively coupled plasma, 200.7 ^{1g} $6010A$ $3120 B$ $1-3720-85$ 973.27^{6} $319B^{10}$ $3113 B$ $319B^{10}$ $319B^{10}$ $319B^{10}$		Inductively coupled plasma-			3120 B			
				7741A	3114 B ³⁷	D3859-88(A)	1-3667-85	
automated colorimetric I-2700-85 Molybdosilicate), or Inductively coupled plasma ⁶ 200.7 ¹ g 6010A 3120 B 52. Silver31, mg/L: Digestion ⁶ followed by: AA direct aspiration, 7760A 3111 B or C I-3720-85 973.27 ⁶ AA furnace, 200.9 ¹ g 7761 3113 B Colorimetric Dithizone , 319B ¹⁰ Inductively coupled plasma, 200.7 ¹ g 6010A 3120 B Inductively coupled plasma 200.8 ¹ g 6020 mass spectrometry.	3 1.							
Inductively coupled plasma ⁶ 200.7 ¹ K 6010A 3120 B 32. Silver31, mg/L: Digestion ⁶ followed by: AA direct aspiration, 7760A 3111 B or C 1-3720-85 973.27 ⁶ AA furnace, 200.9 ¹ K 7761 3113 B Colorimetric I Dithizonet, 319B ¹⁹ Inductively coupled plasma, 200.7 ¹ K 6010A 3120 B Inductively coupled plasma, 200.8 ¹ K 6020 mass spectrometry.		automated colorimetric	370.1		4500-Si D	D859-88		
Digestion ⁶ followed by: 7760 A 3111 B or C I-3720-85 973.27 ⁵ AA direct aspiration, 200.9 ¹ g 7761 3113 B 313 B Colorimetric Dithizone), 319B ¹⁰ 319B ¹⁰ 319B ¹⁰ Inductively coupled plasma, 200.8 ^{1g} 6010 A 3120 B Inductively coupled plasma- 200.8 ^{1g} 6020 4020			200.7 ¹ K	6010A	3120 B			
AA furnace. 200,9 ¹ × 7761 3113 B Colorimetric Dithizone . 319B ¹⁹ Inductively coupled plasma, 200,7 ¹ × 6010A 3120 B Inductively coupled plasma- 200,8 ¹ × 6020 mass spectrometry.	2,							
Colorimetric Dithizone). 319B ¹⁹ Inductively coupled plasma, 200.7 ^{1g} 6010A 3120 B Inductively coupled plasma- 200.8 ^{1g} 6020 6020		AA direct aspiration,			+		1-3720-85	973.275
Inductively coupled plasma- 200.8 ^{1g} 6020 mass spectrometry.								319B ¹⁰
mass spectrometry.					3120 B			
		• • •	200.8 ^{1g}	6020				
		Or direct current plasma						Note 36

63. Sodium. mg/L:

-

DEPARTMENT OF NATURAL RESOURCES NR 219 134-9

Register, February, 1996, No. 482

 \sim

Para	meter. Units & Methods	EPA	SW-846 ^{11.7}	Standard Methods ^{2.2m}	ASTM ³	USCS ⁴	Other	-134-10 NR 219
	Digestion ⁶ followed by: Atomic absorption. Inductively coupled plasma. Direct current plasma, or Flame photometric	273.1 200.7 ¹ 9	7770 6010A	3111 B 3120 B 3500-Na D	D1428-82(A)	I-3735-85	978.54 ⁵ Note 36	
64.	Specific conductance, micromhos/cm at 25°C: Wheatstone bridge	120.1	9050	2510 B	D1125-91(A)	1-1780-85	973.40 ⁵	VISCO
65.	Sulfate (as SO4), mg/L; Automated colorimetric (barium chloroanilate), Semi-automated colorimetric	375.1 375.2 ^{1m}	9035 9036					WISCONSIN ADMINISTRATIVE CODE
	methylthymol blue) Gravimetric,	375.3		4500-SO ₁ 2- C or D			925.54 ⁵	OMIN
	Turbidimetric, or lon chromatography	375.4 300.0 ^{1m}	9038 9056		D516-90		426C ³²	IISTY
66.	Sulfide (as S), mg/L: Titrimetric (iodine) or Colorimetric (methylene blue)	376.1 376.2		4500-S ² -E 4500-S ²⁻ D		1-3840-85	228A ³³	RATIV
67.	Sulfite+as SO3), mg/L: Titrimetric+iodine-iodate+	377,1		4500-80 ₃ 2-				TE CC
68.	Surfactants, mg/L: Colorimet- ric (methylene blue)	425.1		5540 C	D2330-88			DE

_

-

.

-

Parar	neter, Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard Methods ^{2,2m}	ASTM ³	USCS ⁴	Other
69.	Temperature, "C: Thermomet- ric	170.1		2550 B			Note 34
70.	Thallium, ug/L: Digestion ⁶ followed by: AA direct aspiration,	279.1	7840	3111 B			
	AA furnace,	279.2 or 200.9 ¹ 8	7841	3113 B			
	Inductively coupled plasma, or Inductively coupled plasma- mass spectrometry	200.7 ¹ * 200.8 ¹ *	6010A 6020				
1.	Tin, ug/L: Digestion ⁶ followed by:						
	AA direct aspiration. AA furnace, or	282.1 282.2 or 200.9 ^{1g}	7870	3111 B 3113 B		1-3850-7810	
	Inductively coupled plasma	200.7 ^{1g}	6010A				
2.	Titanium, mg/L: Digestion ⁶ followed by:						
	AA direct aspiration . AA furnace, Direct current plasma, or	283.1 283.2		3111 D 3113 B			Note 36
	Inductively coupled plasma	200.7 ^{1g}	6010A		÷		1.04 00
3.	Turbidity, NTU: Nephelomet- ric	180.1 ^{1m}		2130 B	D1889-88(A)	1-3860-85	
14.	Vanadium, mg/L:						

DEPARTMENT OF NATURAL RESOURCES 134-11 NR 219

Register, February, 1996, No. 482

 \sim

Para	meter. Units & Methods	EPA ¹	SW-846 ^{11,7}	Standard <u>Methods^{2,2m}</u>	ASTM ³	USGS ⁴	Other	134-12 NR
	Digestion ⁶ followed by:							12 NF
	AA direct aspiration,	286.1	7910	3111 D				Ñ
	AA furnace,	286.2	7911	3113 B				219
	Inductively coupled plasma,	200.7 ^{1g}	6010A	3120 B				
	Inductively coupled plasma-	200,8 ¹ ×						
	mass spectrometry							~
	Direct current plasma, or				D4190-82(88)		Note 36	IV
	Colorimetric (Gallie acid)			3500-V D				SS
75.	Zinc. mg/L:							WISCONSIN
	Digestion ⁶ followed by:							Z
	AA direct aspiration ^{6m} ,	289.1	7950	3111 B or C		I-3900-85	974.27^{5}	IS
	AA furnace,	239.2 or	7951	3113 B				z
		200.9 ^{1g}						A
	Inductively coupled plasma ^{6m} .	200.7 ¹⁶	6010A	3120 B				Ð
	Inductively coupled plasma-	200.8 ^{1g}	6020					Ē
	mass spectrometry,							. 🖂
	Direct current plasma ^{6m} ,				D4190-82(88)		Note 36	Z
	Colorimetric (Dithizone), or			3500-Zn E				ADMINIST
	Colorimetric (Zincon)			3500-Zn F			Note 36	Ŧ

WISCONSIN ADMINISTRATIVE CODE

 \sim

Register, February, 1996, No. 482

 \sim

TABLE B NOTES

- ¹ "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020. United States Environmental Protection Agency, Revised March 1988 and 1979 where applicable. Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161 (703) 487-4650.
- ^{1g} "Methods for the Determination of Metals in Environmental Samples", EPA-600/4-91-010, Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH 45268, June 1991, Available from the National Technical Information Service (NTIS), order number PB91-231498, 5258 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650.
- ^{Im} "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA-600/R-93-100, Environmental Protection Agency, August 1993. Office of Research and Development, Washington D.C. 20460, August 1993. Available from NTIS, 5235 Port Royal Road, Springfield, Virginia 22161 (703) 487-4650.
- ² "Standard Methods for the Examination of Water and Wastewater", Joint Editorial Board, American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 18th Edition, 1992. Available from American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 2005.
- ^{2m} The 18th edition of "Standard Methods for the Examination of Water and Wastewater" is not significantly different from the 17th edition. The 17th edition remains an acceptable reference for those methods which cite the 18th edition.
- ³ "1993 Annual Book of Standards, Section 11.01 and 11.02, Water and Environmental Technology", American Society for Testing and Materials, 1993. Available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- ¹ "Methods for Analysis of Inorganic Substances in Water and Fluvial Sediments", U.S. Department of the Interior, U.S. Geological Survey, Open-File Report 85-495, 1989, unless otherwise stated. Available from U.S. Ceological Survey, 604 S. Pickett Street, Alexandria, VA 22304.
- ⁶ "Official Methods of Analysis of the Association of Official Analytical Chemists", methods manual, 15th Edition (1990). Available from The Association of Official Analytical Chemists, 1111 N. 19th Street, Suite 210, Arlington, VA 22209.
- ⁶ A digestion procedure is required to solubilize suspended material and to destroy possible organic metal complexes. The required digestion procedure(s) for a particular metals analysis is listed in Table BM. Metals Digestion Procedures. Use of the graphite furnace AA technique, inductively coupled plasma, direct current plasma, as well as determination for certain elements such as arsenic, mercury, selenium, silver, and titanium require a modified digestion procedure. In all cases, the analytical method should be consulted for specific instructions and cautions.

If a digestion procedure is given in the determinative method for any of the metals in table B, and this digestion is not listed in table BM, the procedure given in the analytical method should be used however if the digestion included in one of the approved non-EPA references (e.g. "Standard Methods for the Examination of Water and Wastewater") is significantly different from one of the EPA procedures listed in table BM, than the EPA procedure from table BM should be used.

Sample digestion may be omitted for AA (direct aspiration or graphite furnace), direct current plasma, and inductively coupled plasma analyses provided the sample solution to be analyzed meets the following criteria:

- (a) has a low COD (<20).
- (b) is visibly transparent with a turbidity measurement of 1 NTU or less.

DEPARTMENT OF NATURAL RESOURCES 134-13

	134-
(c) is colorless with no perceptible odor, and (d) is of one liquid phase and free of particulate or suspended matter following acidification.	I-14 NR 219
⁶ ^m Either of the following microwave digestion procedures may be used: "Closed Vessel Microwave Digestion of Wastewater Samples for Determination of Metals", CEM corporation, P.O. Box 200, Mattews, North Carolina 28106- 0200, April 16, 1992. Available form the CEM Corporation. "Test Methods for Evaluating Solid Waste", SW-846 method 3015. United States EPA SW-846, 3rd Edition. Footnote 11 lists the complete reference.	219
⁷ SW-846 series 6000 and 7000 methods include SW-846 method 7000A, the general AA method description.	W
⁸ Manual distillation is not required if comparability data on representative effluent samples are on company file to show that this preliminary distillation step is not necessary; however, manual distillation will be required to resolve any controversies.	WISCONSIN
⁹ Ammonia, Automated Electrode Method, Industrial Method Number 379-75WE, dated February 19, 1976, Technicon AutoAnalyzerII. Available from Technicon Industrial Systems, Benedict Avenue, Tarrytown, NY 10591.	NSI
¹⁰ The approved method is that eited in "Methods for Determination of Inorganic Substances in Water and Fluvial Sediments", USGS TWRI, Book 5, Chapter A1 (1979). Available on inter-library loan.	
¹¹ "Test Methods for Evaluating Solid Waste", 3rd Edition, SW-846, Office of Solid Waste and Emergency Response, Environmental Protection Agency, November 1986, including July 1992, August 1993, September 1994 and January 1995 updates, Washington D.C. 20460. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington D.C. (202) 512-1800.	MINI
¹² "Selected Analytical Methods Approved and cited by the United States Environmental Protection Agency", Supplement to the Fifteenth Edition of "Standard Methods for the Examination of Water and Wastewater," from American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 20005, 1981. Available on inter- library Joan.	ADMINISTRATIVE
¹³ The use of normal and differential pulse voltage ramps to increase sensitivity and resolution is acceptable.	IL
¹⁴ Carbonaccous biochemical oxygen demand (CBOD ₅) must not be confused with the traditional BOD ₅ test which measures "total BOD." The addition of the nitrification inhibitor is not a procedural option, but must be included to report the CBOD ₅ parameter. A discharger whose permit requires reporting the traditional BOD ₅ may not use a nitrification inhibitor in the procedure for reporting the results. Only when a discharger's permit specifically states CBOD ₅ is required, can the permittee report data obtained	VE CO

15 OIC Chemical Oxygen Demand Method. Available from Oceanography International Corporation, 512 West loop, P.O. Box 2980, College Station, TX 77840.

16 Chemical Oxygen Demand, Method 8000, Hach Handbook of Water Analysis, 1979. Available from Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.

¹⁷ The back titration method will be used.

_

using the nitrification inhibitor.

.

WISCONSIN ADMINISTRATIVE CODE

¹⁸ ORION Research Instruction Manual, Residual Chlorine Electrode Model 97-70, 1977, Available from Orion Research Incorporated, 840 Memorial Drive, Cambrid, 02138.	ge, MA
¹⁹ The approved method is that cited in the "Standard Methods for the Examination of Water and Wastewater". 14th Edition, 1976. Available on inter-library loan.	
20 "An Investigation of Improved Procedures for Measurement of Mill Effluent and Receiving Water Color", NCASI Technical Bulletin No. 253, December, 1971. An from National Council of the Paper Industry for Air and Stream Improvements, Inc., 260 Madison Avenue, New York, NY 10016.	vailable
21 Copper, Bicinchoninate Method, Method 3506, Hach Handbook of Water Analysis, 1979. Available from Hach Chemical Company, P.O. Box 389, Loveland, CO 8	0537.
²² After the manual distillation is completed, the auto-analyzer manifolds in EPA Methods 335.03 (Cyanide) or 420.2 (phenols) are simplified by connecting the re-sam directly to the sampler. When using the manifold setup shown in Method 335.3, the buffer 6.2 should be replaced with the buffer 7.6 found in Method 335.2.	ple line
²³ Hydrogen Ion (pH) Automated Electrode Method, Industrial Method Number 378-75WA, October 1976, Technicon AutoAnalyzer II, Available from Technicon Inc Systems, Benedict Avenue, Tarrytown, NY 10591.	dustrial
21 1, 10-Phenanthroline Method for Iron, Hach Method 8008, 1980. Available from Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.	
²⁵ Periodate Oxidation Method for Manganese, Method 8034, Hach Handbook of Wastewater Analysis, 1979, pp. 2-113 and 2-117. Available from Hach Chemical Co P.O. Box 389, Loveland, CO 80537.	mpany,
²⁶ "Methods for Analysis of Organic Substances in Water", by D. F. Goerlitz and Eugene Brown: USGS-TWRI, Book 5, Chapter A3, p. 4, 1972. Available from U.S. Ge Survey, 604 S. Pickett Street, Alexandria, VA 22304.	ological ·
²⁷ Nitrite Nitrogen, Hach Method 8507, Available from Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.	
²⁸ Just prior to distillation, adjust the sulfuric acid preserved sample to pH 4 with $1 + 9$ NaOH.	
²⁹ The approved method is that cited in "Standard Methods for the Examination of Water and Wastewater", 14th Edition. The colorimetric reaction is conducted at a pH + 0.2. The approved methods are given on pp. 576-81 of the 14th Edition: Method 510A for distillation. Method 510B for the manual colorimetric procedure, or Metho for the manual spectrophotometric procedure. Available on inter-library loan.	l of 10.0 xd 510C
³⁰ "Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography", by R. F. Addison and R. G. Ackman, Journal of Chromatography, Volume 47, Ne 421-426, 1970, Available in most public libraries. Back volumes of the Journal of Chromatography are available from Elsevier/North-Holland, Inc., Journal Info Centre, 52 Vanderbilt Avenue, New York, NY 10164.	o. 3, pp. rmation
³⁰ Approved methods for the analysis of silver in industrial wastewaters at concentrations of 1 mg/L and above are inadequate where silver exists as an inorganic halide halides such as the bromide and chloride are relatively insoluble in reagents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosulfate and hydroxide to a pH of 12. Therefore, for levels of silver above 1 mg/L, 20 mL of sample should be diluted to 100 mL by adding 40 mL each of 2M Na ₂ S ₂ O ₃ and 2M	sodium

hydroxide to a pH of 12. Therefore, for levels of silver above 1 mg/L, 20 mL of sample should be diluted to 100 mL by add Standards should be prepared in the same manner. For levels of silver below 1 mg/L the approved method is satisfactory. $a_2S_2O_3$

32 The approved method is that cited in "Standard Methods for the Examination of Water and Wastewater", 15th Edition. Available on inter-library loan.

DEPARTMENT OF NATURAL RESOURCES 134-15 NR 219 33 The approved method is that cited in "Standard Methods for the Examination of Water and Wastewater". 13th Edition. Available on inter-library loan.

³¹ "Water Temperature-Influential Factors, Field Measurement, and Data Presentation", by H. H. Stevens, Jr., J. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1, 1975. Available from U.S. Geological Survey, 604 S. Pickett Street, Alexandria, VA 22304.

²⁵ Zincon Method of Zinc Method 8009, Hach Handbook for Water Analysis, 1979, pp. 2-231 and 2-333. Available from Hach Chemical Company. P.O. Box 389, Loveland, CO 80537.

³⁶ Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes, Method AES0029, "1986 Revised 1991, Fison Instruments, Inc., 32 32 Commerce Center, Cherry Hill Drive, Danvers MA 01923.

³⁷ Use the digestion given in the method.

³⁸ The temperature must be maintained between 500-550 °C, and not the temperature listed in the method.

³⁹Nitrate-nitrite determinations by ion chromatography must be analyzed within 48 hours.

WISCONSIN ADMINISTRATIVE CODE

-

DEPARTMENT OF NATURAL RESOURCES

134-17 NR 219

EPA³ SW-8461 EPA² Analysis Dissolved Metals⁴ 3005A, 3040A¹⁰ 4.1.1 4.1.2 Suspended Metals⁵ 3005A 3010A, 3020A¹¹, 3050A¹⁰, 3051A¹⁰ Total Metals⁵ 4.1.3 Total Recoverable Metals⁷ 4.1.4 3005A 200.2 . 200,112 Acid Soluble Metals⁸

3015¹³

Available Metals⁹

TABLE BM METALS DIGESTION PROCEDURES

 $\left(\begin{array}{c} \end{array} \right)$

134-18 WISCONSIN ADMINISTRATIVE CODE

TABLE BM NOTES

- ¹⁰ Test Methods for Evaluating Solid Waste", 3rd Edition, SW-846, Office of Solid Wast4 and Emergency Response, Environmental Protection Agency, November 1986, including December 1987, July 1992, August 1993, September 1994 and January 1995 updates, Washington D.C. 20460, Available from the Superintendent of Documents, U.S. Government Printing Office, Washington D.C 20402, (202) 512-1800.
- ²⁰Methods for the Determination of Metals in Environmental Samples", EPA-600/4-91-010, Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH 45268, June 1991. Available from the National Technical Information Service (NTIS), order number PB91-231498, 5258 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650.
- ³ "Methods for Chemical Analysis of water and Wastes", EPA-600/4-79-020, United States Environmental Protection Agency, Revised March 1983 and 1979 where applicable. Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161 (703) 487-4650.
- ⁴ "Dissolved metals" means those constituents of a sample that will pass through a 0.45 micron membrane filter prior to sample acidification.
- ⁵ "Suspended metals" means the concentration of metals determined in the portion of a sample retained by a 0.45 micron membrane filter prior to acidification.
- ⁶ "Total metals" means the concentration of metals determined on a solid sample or unfiltered aqueous sample following a vigorous digestion, or alternatively the sum of the metals determined in both the dissolved and suspended fractions,
- ? "Total recoverable metals" means the concentration of metals determined on an unfiltered sample following treatment with hot dilute mineral acid.
- ⁸ "Acid soluble metals" means those constituents of a sample that will pass through a 0.45 micron membrane filter after the sample has been adjusted to pH 1.75 and held for 16 hours. This method is applicable to arsenic, cadmium, chromium, copper, and lead.
- ⁹ "Available metals" are equivalent to "total metals". SW-846 lists method 3015 as a preparation for available metals.
- ¹⁶ "These methods are for total metals analysis of sediment, sludge, and soil samples and do not apply to wastewater. The required analytical methodology for metals in wastewater sludge is given in Table EM.
- ¹¹Method 3020 is applicable for analysis by GFAA. Method 3010 requires sample acidification with HC1.
- ¹²Method 200.1 is only applicable for As, Cd, Cr, Cu and Pb.
- ¹³ This method is a microwave-assisted acid leachate digestion.

Parameter	EPA Meth Number ¹ . arameter GC GC		Standard Methods ^{8.13}	SW-846 Method Number ^{11.12} GCGCGC/MSGC/MS				Other
 Volatiles		624 ³	······································	capillary 8021A	pkd ¹⁴	capillary 8260A	pkd ¹⁴ 8240B	. <u>.</u> .,,,,,,,
A. Halogenated volatiles Bromodichloromethane Bromoform	601	1624	6230 B, 6210 B		8010B			
Bromomethane Carbon tetrachloride								Note 2, p.130
Chloroethane Chloroform Chloromethane Dibromochloromethane								Note 2, p.130
Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3 Dichloropropane trans-1,3-Dichloropropene			not 6210 B					
Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene								Note 2, p.130 Note 2, p.130 Note 2, p.130
1.1.1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofiuoromethane								Note 2, p.130

LIST OF APPROVED TEST PROCEDURES FOR NON-PESTICIDE ORGANIC COMPOUNDS IN WASTEWATER

TABLE C

Register, February, 1996, No. 482

134-19 NR 219

Parameter	EPA Nun GC	Method 1ber ^{1.6} GC/MS	Standard Methods ^{8,13}	SW- GC capillary	-846 Meth GC pkd ¹⁴	od Number ^{1'} GC/MS capillary	1,12 GC/MS pkd ¹⁴	Other
B. Aromatic volatiles Benzene Chlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene Ethylbenzene Toluene	602 601 601, 612 601, 612 601, 612 601, 612	$\begin{array}{c} 1624\\ 1624\\ 625, 1625\\ 625, 1625\\ 625, 1625\\ 625, 1625\\ 1624\\ 1624 \end{array}$	6220 B 6210 B 6210 B, 6230 B 6230 B, 6410 B 6230 B, 6410 B 6230 B, 6410 B 6230 B 6210 B		8020A	2222		Note 2, p.130
C. Other volatiles Acrolein Acrylonitrile	603	1624,624 ³		8030A 8031	H	8260A	8240B	LC: 8315 (SW-846) LC: 8316 (SW-846)
Phenols 4-Chloro-3-methylphenol 2-Chlorophenol 2.4-Dichlorophenol 2.4-Dimethlyphenol 2.4-Dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Nitrophenol 4-Nitrophenol Phenol 2.4.6-Trichlorophenol	601	625, 1625	6410 B, 6420 B		8040A	8270 B	8250A	Note 2, p.140
Phthalate esters Benzyl butyl phthalate Bis(2-ethylhexyl)phthalate	606	625, 1625	6410 B	8061	S060	8270 B	8250A	

.---

· .~

	Parameter	EPA Method Number ^{1,6} GC GC/MS		Standard Methods ^{8,13}	SW-846 Method Number ^{11,12} GC GC GC/MS GC// capillary pkd ¹⁴ capillary pkd ¹			GC/MS	IS Other	
<u></u>	Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate	• • • • • • • • • • • • • • • • • • • •			<u>capillary</u>	pkd ¹ *	capillary	pkd ¹⁴		
IV.	Nitros amin es N-Nitrosodimethylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	607	625, 1625 note 4 note 4	6410 B	*	8070	8270B	8250A		
v.	Polychlorinated biphenyls PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260	608	625	6410 B	8081	8080A	8270 B	8250A	Note 2, p.43	
VI.	Nitroaromatics & cyclic ketones 2,4-Dinitrotoluene 2,6-Dinitrotoluene Isophorone Nitrobenzene	609	625, 1625	6410 B		8090	8270B	8250A		NR
VII.	Polynuclear aromatic hydrocarbons Acenaphthene	610/FID	625, 1625	6410 B, 6440 B		8100	8270B	8250A	Note 9: 610. LC: 8310 (SW-846)	R 219

DEPARTMENT OF NATURAL RESOURCES 134-21 NR 219

Register, February, 1996, No. 482

.

and and a second se

			1		
	11			÷	12
	. :			1	
			i		
			I	I	
	11			1	
			1		
			;	I	44
	1.		-		
-	1.		d'		영관
	1.1			1	
	1		1		
					이네
-			i		
	ie.				
			ł		
		ana anananya na anana ana ana ana ana an	and the second		
			ļ		
		11	1		
		1	i. T		
	1.11		÷		
	11				
	1.1		Ŧ.		
				:	
	1.11		:		
	1.1				有用
	1.1		ľ		
			· · · · · · · · · · · · · · · · · · ·		
	140	44			
			4		
		11	Ť		
			1		
	11		the transformed time.		
			!		
	211		£		
			ľ		
			1		
	[10] J. K.		÷.		21
	11	-41	1	1	
			A CARACTER AND A CARACTER		
			ľ		音目:
			1		
				-	
		10 E.M.	11		and the

. --

÷

	Parameter		A Method Jumber ^{1,6} GC/MS	Standard Methods ^{8,13}	SW GC capillary	-846 Metho GC pkd ¹⁴	d Number ^{11.} GC/MS capillary	12 GC/MS pkd ¹⁴	Other
VIII.	Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Ideno (1,2-3-cd)pyrene Naphthalene Phenanthrene Pyrene Hakethers	611	625, 1625	6410 B	8021A	8110	8270 B	8250A	
	Bis(2-chloroethoxy) methane Bis(2-chloroethyl)ether 4-Bromophenylphenyl ether 4-Chlorophenylphenyl ether 2,2-Oxybis (1-chloropropane)								
IX.	Chlorinated hydrocarbons	612	625, 1625	6410 B	8121	8120A	8270B 8260A	8250A, 8240A	
	Benzyl chloride	·	_	<u>_</u>		8010B			Note 2, p.130; Note 5, p.\$102
	2-Chloronaphthalene						not 8260A	not 8240A	8410 (SW-846)
	Epichlorohydrin					8010B	not 8270B	not 8250A	Note 2, p.130; Note 5, p.S102

 $\mathcal{T}_{\mathcal{T}}$

	Parameter	EPA Method Number ^{1,6} GC GC/MS	Standard Methods ^{8,13}	SW GC capillary	-846 Method GC pkd ¹⁴	Number ¹¹ GC/MS capillary	12 GC/MS pkd ¹⁴	Other	DEPARTMENT
	Hexachlorobenzene			8081		not 8260A	not 8240A	8410 (SW-846)	TM
	Hexachlorobutadiene Hexachlorocyclopentadiene 1.2.4-Trichlorobenzene Hexachloroethane	note 4	,	8021A 8081 8021A		not 8260A	not \$240A	8410 (SW-846) 8410 (SW-846) Note 2, p.130	ENT OF
	Benzidine 3.3-Dichlorobenzidine	note 4		 		not 8260A not 8260A	not 8240A	LC: 605 not 8240A	
x.	Polychlorinated dibenzo-p-di- oxins and furans 1,2,3,4,6,7,8- Heptachlorodibenzo-p- dioxin 1,2,3,4,6,7,8- Heptachlorodibenzofuran 1,2,3,4,7,8,9- Heptachlorodibenzofuran 1,2,3,4,7,8-Hex- achlorodibenzo-p-dioxin 1,2,3,6,7,8-Hex- achlorodibenzo-p-dioxin 1,2,3,7,8,9-Hex-	1613 A ⁷				8280, 8290			NATURAL RESOURCES
	achlorodibenzo-p-dioxin 1,2,3,4,7,8-Hex- achlorodibenzofuran 1,2,3,6,7,8-Hex- achlorodibenzofuran 1,2,3,7,8,9-Hex- achlorodibenzofuran								134-23 NR 219

~

Register, February, 1996, No. 482

~~~ 

~~~~

Parameter	EPA Method Number ^{1,6} GC GC/MS	Standard Methods ^{8,13}	SW-846 Metho GC GC capillary pkd ¹⁴	od Number ^{11,12} GC/MS GC/MS <u>capillary pkd¹⁴</u>	Other	134-24 NR 219
2,3,4,6.7.8-Hex- achlorodibenzofuran Octachlorodibenzofuran 1,2,3,7.8-Pentachlorodibenzo- p-dioxin 1,2,3,7.8- Pentachlorodibenzofuran 2,3,4.7.8-Tetrachlorodibenzo- p-dioxin 2,3,7,8-Tetrachlorodibenzo- p-dioxin 2,3,7,8-Tetrachlorodibenzo- p-dioxin 2,3,7,8-Te- trachlorodibenzofuran	613 ^{5m}				Note 10	WISCONSIN
		TABLE C NOTE	s			AIN
¹ "The full text of Methods 601-613, Pollutants", The standardized test of 40 CFR part 136, "Definition ar ments, U.S. Government Printing	procedure to be used to det id Procedure for the Detern	termine the method nination of the Meth	detection limit (MDL)	for these procedures is	given in Appendix B	ADMINISTRATIVE
² "Methods for Benzidine, Chlorinat and Support Laboratory, United S Environmental Protection Agency	States Environmental Prote	ction Agency, Cinci	l Pesticides in Water and innati, Ohio 1978. Avail	d Wastewater," Enviro lable from: ORD Publi	nmental Monitoring ications, CERI, U.S.	IIVE
³ Method 624 may be extended to see these two compounds is Method 6		d Acrylonitrile. Hov	wever, when they are kn	own to be present, the	preferred method for	CODE
⁴ Method 625 may be extended to a	nclude benzidine, hexachlo	rocyclopentadiene,	N-nitrosodimethylamir	e, and N-nitrosodiphe	nylamine. However,	Œ

⁴ Method 625 may be extended to include benzidine, hexachlorocyclopentadiene. N-nitrosodimethylamine, and N-nitrosodiphenylamine. However, when they are known to be present. Methods 605, 607, and 612, or Method 1625, are preferred methods for these compounds.

⁵ "Selected Analytical Methods approved and Cited by the United States Environmental Protection Agency," Supplement to the 15th Edition of "Standard Methods for the Examination of Water and Wastewater" (1981). Available from: American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 20036.

^{5m} 625 Sreening only.

- ⁶ Each analyst must make an initial, one-time, demonstration of their ability to generate acceptable precision and accuracy with Methods 601-613, 624, 625, 1613A, 1624, and 1625 in accordance with procedures in section 8.2 of each of these Methods. Additionally, each laboratory, on an on-going basis must spike and analyze 10% (5% for Methods 624 and 625 and 100% for Methods 1624 and 1625) of all samples to monitor and evaluate laboratory data quality in accordance with sections 8.3 and 8.4 of these Methods. When the recovery of any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect and cannot be reported to demonstrate regulatory compliance.
- Method 1613 Revision A: Tetra- through Octa- Chlorinated Dioxins and Furans by Isotope Dilution, HRGC/HRMS, Environmental Protection Agency, Federal Register, page 5098, February 1991. Available from the Superintendent of Documents, US Government Printing Office, Washington, D.C. 20402.
- ⁸ "Standard Methods for the Examination of Water and Wastewater", Joint Editorial Board, American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 18th Edition, 1992, Available from American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 20005,
- 9 Method D4657-92, "Annual Book of Standards- Water and Environmental Technology". Section 11, Parts 11.01 and 11.02, American Society for Testing and Materials, 1993. Available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- ¹⁰ Method D4675-92, "Annual Book of Standards- Water and Environmental Technology", Section 11, Parts 11.01 and 11.02, American Society for Testing and Materials, 1993, Available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- ¹¹ "Test Methods for Evaluating Solid Waste", 3rd Edition. SW-846, Office of Solid Waste and Emergency Response, Environmental Protection Agency, November 1986, including December 1987, July 1992, August 1993, September 1994 and January 1995 updates, Washington DC 20460, Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402, (202) 512-1800.
- ¹² SW-846 methods 8021, 8061, 8081, and 8121 require one of the following sample preparation (extraction/clean-up) procedures: 3500/3510 (liquid-liquid extraction), 3500/3520 (continuous liquid-liquid extraction), or 5030 (purge and trap method). The required sample preparation procedure is given in the determinative procedure. Method 8021 requires 5030 (purge and trap). Methods 8081 and 8121 require either 3500/3510 or 3500/3520 in addition to 3600. Method 8061 requires 3510. For methods 8021, 8061, 8081, and 8121 see also SW-846 method 800A.
 ¹³ The 18th edition of "Standard Methods for the Examination of Water and Wastewater" is not significantly different from the 17th edition. The 17th
- edition remains an acceptable reference for those methods which cite the 18th edition.

¹⁴ In order to reference these methods, the laboratov must use a packed column for the GC separations.

Register, February, , 1996, No 482

				SW-846 ^{A,R}		Standard		
Para	meter	Method	EPA ^{2,7}	pkd ¹¹	cap.	Methods ^{B,9}	ASTM	Other
	Aldrin	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7: Note 4, p.30
.	Ametryn	GC						Note 3, p.83; Note 6, p.S68
i.	Aminocarb	HPLC						Note 10
	Atraton	GC						Note 3, p.83: Note 6, p.868
5. 5.	Atrazine Azinphos methyl	GC GC GC/MS		8140 8140 8250A	8141A 8141A 8270B			Note 3. p.83; Note 6. p.868 Note 3. p.25; Note 6. p.851
	Barban	HPLC GC/MS		8250A	8270B			Note 10
ł.	∞ -BHC	GC GC/MS	608 625 ⁵	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7
	β-ВЯС	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 C 6410 B	D3086-90	
0.	èBHC	GC GC/MS	608 625 ⁵	8080A 8250A	8081 8270B	6630 C 6410 B	D3086-90	
1.	γ-BHC (Lindane)	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.30
2.	Captan	CC				6630 B	D3086-90	Note 3. p.7.

(1) A starting of the start

.

~

				sw-s	46 ^{A,X}	Standard		
Parar	meter	Method	EPA ^{2,7}	pkd ¹¹	cap.	Methods ^{B,9}	ASTM®	Other
		GC/MS		8250A	8270B			
13.	Carbaryl	HPLC GC/MS		\$250A	8270B			Note 10
14.	Carbophenothion	GC GC/MS		8140 8250A	8141A 8270B			Note 4, p.30; Note 6, p.S73.
15.	Chlordane	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7
16.	Chloropropham	HPLC						Note 10
17,	2.4-D	GC		8150B	8151	6640 B		Note 3, p.115; Note 4, p.35.
18.	4,4'-DDD	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3. p.7: Note 4, p.30.
19.	4,4'-DDE	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.30.
20.	4,4'-DDT	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.30
21.	Demeton-O	GC GC/MS		8140 8250A	8141A 8270B			Note 3, p.25; Note 6, p.S51.
22.	Demeton-S	GC GC/MS		8140 8250A	8141A 8270B			Note 3, p.25; Note 6, p.851.
23.	Diazinon	GC		8140	8141			Note 3, p.25; Note 4, p.30; Note p.S51

DEPARTMENT OF NATURAL RESOURCES

134-27 NR 219

Register, February, 1996, No. 482

Register, February, 1996, No. 482

÷

					346 ^{A.8}	Standard		
Para	meter	Method	EPA ^{2.7}	pkd ¹¹	cap.	Methods ^{B.9}	ASTM	Other
24.	Dicamba	cc		8150B	8151			Note 3, p.115
25.	Dichlofenthion	GC		8140	8141			Note 4, p.30; Note 6, p.S73
26.	Dichloran	cc				6630 B & C	D3086-90	Note 3, p.7
27.	Dicofol	GC						
28.	Dieldrin	GC CC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B		Note 3, p.7; Note 4, p.30
29.	Dioxathion	GC GC/MS		8140 8250A	8141A 8270B			Note 4, p.30; Note 6, p.S73
30.	Disulfoton	GC GC/MS		8140 8250A	8141A 8270B			Note 3, p.25: Note 6, p.851
31.	Diuron	HPLC						Note 10
2.	Endosulfan I	GC GC/MS	608 625 ⁵	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7
3.	Endosulfan II	GC GC/MS	608 625 ⁵	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7
34.	Endosulfan sulfate	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 C 6410 B		
35.	Endrin	GC GC/MS	608 625 ⁵	8080A 8250A	8081 8270 B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.30
36.	Endrin aldehyde	GC	608	8080A	8081		D3086-90	

 \frown

_			EPA ^{2.7}	SW-8 pkd ¹¹	346 ^{A,8}	Standard Methods ^{B.9}	ASTM	Other
Paran	neter	Method	BPA	pkd''	cap.	Methods	ASTM	Other
	7	GC/MS	625	8250A	8270B	6410 B		
37.	Ethion	GC GC/MS		8140 8250A	8141A 8270B			Note 4, p.30; Note 6, p.S73
38.	Fenuron	HPLC						Note 3, p.104; Note 6, p.S64
39.	Fenuron-TCA	HPLC						Note 10
40.	Heptachlor	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.80
41.	Heptachlor epoxide	GC	608	8080A	8081	6630 B	D3086-90	Note 3, p.7; Note 4, p.30; Note 6 p.S73
		GC/MS	625	8250A	8270B	6410 B		
42,	Isodrin	GC GC/MS	8080A 8250A	8081 8270B				Note 4, p.30; Note 6, p.S73
43.	Linuron	HPLC						Note 10
44,	Malathion	GC		8140	8141A	6630 C		Note 3, p.25; Note 4, p.30; Note 6, p.S51
		GC/MS		8250A	8270B			p.531
45.	Methiocarb	HPLC						Note10
46.	Methoxychlor	GC GC/MS		8080A 8250A	8081 8270B	6630 B & C	D3086-90	Note 3, p.7; Note 4, p.30
47.	Mexacarbate	HPLC GC/MS		8250A	8270B			Note 10

 \sim

Register, February, 1996, No. 482

1

ł

Register, February, 1996, No. 482

.

 \sim

		37.43 1	ED + 27	SW-8 pkd ¹¹	846 ^{A,H}	Standard Methods ^{B,9}	ASTM	Other	
Para	meter	Method	EPA ^{2.7}	pkd	cap.	Methods	ASTM	Other	- z
18.	Mirex	GC GC/MS		8080A 8250A	8081 8270B	6630 B & C		Note 3, p.7	NR 219
19.	Monuron	HPLC						Note 10	
50.	Monuron-TCA	HPLC						Note 10	
51.	Neburon	HPLC						Note 10	
52,	Parathion methyl	CC GC/MS		8140 8250A	8141A 8270B	6630 C		Note 3, p.25; Note 4, p.30	
53.	Parathion ethyl	GC CC/MS		8140 8250A	8141A 8270B	6630 C	D3086-90	Note 3. p.25	
54.	PCNB	GC GC/MS		8080A 8250A	8081 8270 B	6630 B & C		Note 3. p.7	
55.	Perthane	GC		8080A	8081		D3086-90		
56.	Prometon	GC						Note 3, p.83; Note 6, p.868	
57.	Prometryn	GC						Note 3, p.\$3; Note 6, p.\$68	
57.	Propazine	GC						Note 3, p.83; Note 6, p.868	
58.	Propham	HPLC						Note 10	
59.	Propoxur	HPLC						Note 10	
50.	Secoumeton	HPLC						Note 10	
51.	Siduron	HPLC						Note 10	

.

				SW-846	A.8	Standard		
Рага	meter	Method	EPA ^{2,7}	pkd ¹¹	cap.	Methods ^{B,9}	ASTM	Other
62.	Simazine	GC		8140	8141A			Note 3, p.83; Note 6, p.868
63.	Strobane	GC		8080A	8081	6630 B & C		Note 3, p.7
64.	Swep	HPLC						Note 10
65.	2.4.5-T	GC		8150B	8151	6640 B		Note 3, p.115; Note 4, p.35
66,	2,4,5-TP (Silvex)	GC		8150B	8151	6640 B		Note 8, p.115
67.	Terbuthylazine	GC						Note 3, p.83; Note 6, p.868
68.	Toxaphene	GC GC/MS	608 625	8080A 8250A	8081 8270B	6630 B & C 6410 B	D3086-90	Note 3, p.7; Note 4, p.30
70.	Trifluralin	GC GC/M8		8080A 8080A	8081 8270B	6630 B		Note 3, p.7
				TABLE D N	OTES			

 ¹⁴ "Test Methods for Evaluating Solid Waste", 3rd Edition. SW-846, Office of Solid Waste and Emergency Response, Environmental Protection Agency, November 1986, including December 1987, July 1992, August 1993, September 1994 and January 1995 updates, Washington DC 20460. Available from the Superintendent of Documents, U.S.
 ¹⁵ Government Printing Office, Washingtion, DC 20402, (202) 512-1800.

⁸ "Standard Methods for the Examination of Water and Wastewater". 18th Edition, Joint Editorial Board, American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1015 Fifteenth Street, N.W., Washington, D.C. 20005, 1992. Available from American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 20005.

Register, February, 1996, No. 482

C "Annual Book of Standards- Water and Environmental Technology". Section 11, Parts 11.01 and 11.02, American Society for Testing and Materials, 1993, Available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

Pesticides are listed in this table by common name for the convenience of the reader. Additional pesticides may be found under Table D, where entries are listed by chemical name and type.

- ² The full text of methods 608 and 625 are given in Appendix A of the Federal Register. October 26, 1984 (Part VIII, 40 CFR part 136), "Test Procedure for Analysis of Organic Pollutants". The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given in Appendix B of 40 CFR part 136, "Definition and Procedure for the Determination of the Method Detection Limit". Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
- ³ "Methods for Benzidine, Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater". U.S. Environmental Protection Agency. September, 1978, This EPA publication includes thin-layer chromatography (TLC) methods. Available from: ORD Publications, CERI, U.S. Environmental Protection Agency, 26 W. St. Claire, Cincinnati, Ohio 45268.

⁴ "Methods for Analysis of Organic Substances in Water", Book 5, Chapter A3, 1987, Available from: U.S. Geological Survey, 604 S. Pickett Street, Alexandria, VA 22304.

⁵ The method may be extended to include a(alpha)-BHC, d(delta)-BHC, endosulfan I, endosulfan II, and endrin. However, when they are known to exist, Method 608 is the preferred method.

⁶ "Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency," Supplement to the Fifteenth Edition of "Standard Methods for Examination of Water and Wastewater" (1981), Available from: American Public Health Association, 1015 15th St., N.W., Washington, D.C. 20005.

⁷ Each analyst must make an initial, one-time demonstration of their ability to generate acceptable precision and accuracy with Methods 608 and 625 (See Appendix A in 40 CFR part 136) in accordance with procedures given in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis, must spike and analyze 10% of all samples analyzed with Method 608 or 5% of all samples analyzed with Method 608 or 5% of all samples analyzed with Method 625 to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect and cannot be reported to demonstrate regulatory compliance. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

* Some of these methods require a preliminary extraction. Methods 8141 A and 8081 require the use of either SW-846 method 3500/3510 or 3500/3520. Methods 8151 and 8270 B include the extraction steps necessary for most compounds. For methods 8081, 8141, and 8151 see also SW-846 method 8000 A and 3600.

⁹ The 19th edition of "Standard Methods for the Examination of Water and Wastewater" is not significantly different from the 17th edition. The 17th edition remains an acceptable reference for those methods which cite the 18th edition.

¹⁹ HPLC method 623 from "Methods for Nonconventional Pesticides Chemicals Analysis of Industrial and Municipal Wastewater", EPA 440/1-83/079-C, United States Environmental Protection Agency, Available from National Technical Information Service, 5258 Port Royal Road, Springfield, Virginia, 22161 (703) 487-4650.

 11 In order to reference these methods, the laboratoy must use a packed column for the GC separations.

	LIS	TABLE E T OF APPROVED RADIOLOGICAL TEST PI	TABLE E DVED RADIOLOGICAL TEST PROCEDURES FOR WASTEWATER			
Pa	rameter and Units	Method	EPA ¹	Standard Methods ²	ASTM ³	USGS4
1.	Alph-Total, pCi per liter	Proportional or Scintillation Counter	900.0	7110 B	D1943-90	pp. 75 and 78 ⁵
2.	Alpha-Counting error, pCi per liter	Proportional or Scintillation Counter	Appendix B	7110 B	D1943-90	p. 79
3.	Beta-Total, pCi per liter	Proportional Counter	900.0	7110 B	D1890-90	pp. 75 and 78 ⁵
4,	Beta-Counting error, pCi	Proportional Counter	Appendix B	7110 B	D1890-90	р. 79
5.	(a) Radium-Total (b) 226Ra, pCi per liter	Proportional Counter Scintillation Counter	903.0 903.1	7500Ra B 7500Ra C	D2460-90 D3454-7991	p. 81

TABLE E NOTES

¹ "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/-4-80-032, U.S. Environmental Protection Agency, August 1980.

² "Standard Methods for the Examination of Water and Wastewater", 17th or 18th Edition, Joint Editorial Board, American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1015 Fifteenth Street, N.W., Washington, D.C. 20005, 1989. Available from American Public Health Association, 1015 Fifteenth Street, N.W., Washington, D.C. 20005.

³ "1993 Annual Book of Standards, Water" Section 11.01 and 11.02, Water and Environmental Technology, American Society for Testing and Materials, 1993. Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

¹ "Selected Methods of the U.S. Geological Survey of Analysis of Wastewaters," U.S. Geological Survey, Open-File Report 76-177 (1976)

⁵ The method found on p. 75 measures only the dissolved portion while the method on p. 78 measures only the suspended portion. Therefore, the two results must be added to obtain the "total".

Register,

, February,

, 1996,

No. 482

134-34 WIS	ONSIN ADMINISTRATIVE CODE
------------	---------------------------

ł

(

()

APPROV	ED ANALY	TICAL METHODS FOR SL	JUDGE
Parameter	Digestion	Method	Method Number
Metals ¹			
Arsenic	3050A	Inductively Coupled Plasma Emission	. 6010A
Arsenic	7061A	Gaseous Hydride ²	7061A
Arsenic	3050A	Graphite Furnace	7060A
Beryllium	3050A	Inductively Coupled Plasma Emission	6010A
Beryllium	3050A	Flame Atomic Absorption	7090
Beryllium	3050A	Graphite Furnace	7091
Cadmium	3050A	Inductively Coupled Plasma Emission	6010A
Cadmium	3050A	Flame Atomic Absorption	7130
Cadmium	3050A	Graphite Furnace	7131A
Chromium	3050A	Inductively Coupled Plasma Emission	6010A
Chromium	3050A	Flame Atomic Absorption	7190
Chromium	3050A	Graphite Furnace	7191
Copper	3050A	Inductively Coupled Plasma Emission	6010A
Copper	3050A	Flame Atomic Absorption	7210
Lead	3050A	Inductively Coupled Plasma Emission	6010A
Lead	3050A	Flame Atomic Absorption	7420
Lead	3050A	Graphite Furnace ³	742[
Mercury	7471A	Cold Vapor	7471A

Register, February, 1996, No. 482

DEPARTMENT OF NATURAL RESOURCES

	134-35
NR	219

APPROVI	ED ANALY	TICAL METHODS FOR SL	UDGE
Parameter	Digestion	Method	Method Number
Molybdenum	3050A	Inductively Coupled Plasma Emission	6010A
Molybdenum	3050A	Flame Atomic Absorption	7480
Molybdenum	3050A	Graphite Furnace	7481
Nickel	3050A	Inductively Coupled Plasma Emission	6010A
Nickel	3050A	Flame Atomic Absorption	7520
Selenium	3050A	Inductively Coupled Plasma Emission	6010A
Selenium	7741A	Gaseous Hydride ²	7741A
Selenium	3050A	Graphite Furnace	7740
Zine	3050A	Inductively Coupled Plasma Emission	6010A
Zinc	3050A	Flame Atomic Absorption	7950
Biological			
Enteric viruses	NA	Centrifuge Concentration	D 4994-89 ⁴
Fecal coliform	NA NA	Most Probable Number Membrane Filter	9221 E or 9222 D ⁵
Helminth ova	NA	Density Gradient Flotation	6
Specific Dxygen Uptake Rate	NA	Respirometer	2710 B ⁵
Saimonella	NA	Most Probable Number Selective Media Culture	9260 D.1 ⁵ 1
Physical			
Solids	NA	Gravimetric	2540 G ⁵
Percent Volatiles Solids Reduction	NA	Calculation	8

TABLE EM NOTES

- ¹ "Test Methods for Evaluating Solid Waste", SW-846, Office of Solid Waste and Emergency Response, Environmental Protection Agency, November 1986, including December 1987 and July 1992 updates, Washington, DC 20460, Available from the Superintendent of Documents, U.S. Government Printing Office, Room 190, Federal Building, P.O. Box 371954, Pittsburgh, PA 15250-7954, (202) 783-3238.
- ² High levels of chromium, copper, mercury, silver, cobalt, or molybdenum may interfere with the analysis. Consult method 3114, of "Standard Method for the Examination of Water and Wastewater", 17th or 18th edition, for more information.
- ³ Concentrations of lead in municipal sludge may exceed the working range of Graphite Furnace.
- ⁴ "1993 Annual Book of ASTM Standards, Section 11.02, Water and Environmental Technology", American Society for Testing and Materials, 1993, 1916 Race Street, Philadelphia, PA 19103. Available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- ⁵ "Standard Methods for the Examination of Water and Wastewater", 18th ed., American Public Health Association, 1015 Fifteenth Street NW, Washington D.C. 20005, 1992. Available from American Public Health Association, 1016 Fifteenth Street, N.W., Washington, D.C. 20005.

Register, February, 1996, No. 482

.....

134-36 WISCONSIN ADMINISTRATIVE CODE

- ⁶ "Occurrence of Pathogens in Distribution and Marketing Municipal Sludges", EPA 600/1-87-014, Environmental Protection Agency, 1987. Available from the National Technical Information Service, order # PB 88-154273/AS, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650.
- ⁷ "Determination and Enumeration of Salmonella and Pseudomonas aeruginosa", Kenner, B.A. and H.A. Clark, J. Water Pollution Control Federation, 46(9):2163-2171, 1994. Available from the Water Environment Federation, 601 Wythe St., Alexandria, VA 22314.
- ⁸ "Environmental Regulations and Technology Control of Pathogens and Bextors in Sewage Studge", EPA-625/R-92/013, Environmental Protection Agency, Cincinnati, OH, 1992. Available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650.

(

..<u>.</u>....

⁹If an alternative digestion procedure is specified in the analytical method, the digestion in the method shall be used. In all cases, consult the analytical method for special requirements and cautions. SW-846 method 3051 is an acceptable alternate digestion procedure to SW-846 method 3050A.

Register, February, 1996, No. 482

()

()

		TAR	LE F				
REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES FOR WASTEWATER							
Param	eter No./name	Container ¹	Preservation ^{2,3}	Maximum holding time ⁴			
TABLI	A - Bacterial Tests:			·			
1-5.	Bacteria	P,G	Cool, 4°C, 0.008%, Na ₂ S ₂ O ₃ ⁵	6 hours			
6-7.	Enteroviruses	P,G	Cool, 4°C	24 hours			
8.	Mutagenicity	G, Teflon-lìned cap	Cool, 4°C	7 days			
9-12.	Acute & chronic toxic- ity	P,G	Cool, 4°C	48 hours			
TABLI	E B - Inorganic Tests:			ι.			
1.	Acidity	P,G	Cool, 4°C	14 days			
2.	Alkalinity	P,G	Cool, 4°C	14 days			
4.	Ammonia	P,G	Cool, 4°C, H_2SO_4 to $pH < 2$	28 days			
9.	Biochemical oxygen de- mand	P,G	Cool, 4*C	48 hours			
11.	Bromide	P,G	None required	28 days			
14.	Biochemical oxygen de- mand, carbonaceous	P,G	Cool, 4*C	48 hours			
16.	Chemical oxygen de- mand	P,G	Cool, 4°C, H_2SO_4 to pH < 2	28 days			
16.	Chloride	P,G	None required	28 days			
17.	Chlorine, totał residual	P,G	None required	Analyze immedi- ately			
21.	Color	P,G	Cool, 4°C	48 hours			
23-24,	Cyanide, total and ame- nable to chlorination	P,G	Cool, 4°C, NaOH to pH > 12, 0.6g ascorbic acid ⁵	14 days ⁶			
25.	Fluoride	P	None required	28 days			
27.	Hardness	P,G	HNO3 to pH <2, H2SO4 to pH <2	6 months			
28.	Hydrogen ion (pH)	P,G	None required	Analyze immedi ately			
31, 43.	 Kjeldahl and organic ni- trogen 	P,G	Cool, 4°C, H_2SO_4 to pH < 2	28 days			
38.	Nitrate	P,G	Cool, 4'C	48 hours			
39.	Nitrate-nitrite	P,G	Cool, 4°C, H_2SO_4 to pH < 2	28 days			
40.	Nitrite	P,G	Cool, 4'C	48 hours			
41.	Oil and grease	G	Cool, 4°C, HCl or H ₂ SO ₄ to pH <2	28 days			
			Register, Februa	rv 1996 No 18			

Register, February, 1996, No. 482

WISCONSIN ADMINISTRATIVE CODE

134-38 NR 219

Parame	eter No./name	Container ¹	Preservation ^{2,3}	Maximum holding tîme ^t	
12,	Organic carbon	G	Cool, 4°C, HCl or H ₂ SO ₁ or H ₃ PO ₁ to pH <2	28 days	
И.	Orthophosphate	P,G	Filter immediately, Cool, 4°C	48 hours	(
6.	Oxygen, Dissolved Probe	G Bottle and top	None required	Analyze immedi- ately	
7.	Winkler	G Bottle and top	Fix on site and store in dark	8 hours	
8.	Phenols	G only	Cool, 4°C, $\rm H_2SO_1$ to $\rm pH < 2$	28 days	
9.	Phosphorus (elemental)	G	Cool, 4°C	48 hours	
10.	Phosphorus, total	P,G	Cool, 4°C, H ₂ SO ₄ to pH $<\!2$	28 days	
53.	Residue, total	P.G	Cool, 4°C	7 days	
54.	Residue, Filterable	P,G	Cool, 4°C	7 days	
5.	Residue, Nonfilterable (TSS)	P,G	Cool, 4'C	7 days	
56.	Residue, Settleable	P.G	Cool, 4°C	48 hours	
57.	Residue, Volatile	P,G	Cool, 4°C	7 days	
1.	Silica	P, or Quartz	Cool, 4°C	28 days	
ы.	Specific conductance	P,G	Cool, 4°C	28 days	
15.	Sulfate	P,G	Cool, 4°C	28 days	
56.	Sulfide	P,G	Cool, 4°C, add zinc acetate plus NaOH to pH >9	7 days	
67.	Sulfite	P.G	None required	Analyze immedi- ately	
68.	Surfactants	P,G	Cool, 4°C	48 hours	
69.	Temperature	P,G	None required	Analyze immedi+ ately	
73.	Turbidity	P,G	Cool, 4'C	48 hours	(
FABLI	E B - Metals ¹ :				•.
10.	Boron	P. or Quartz	HNO_3 to $pH < 2$	6 months	
18.	Chromium VI	P,G	Cool, 4°C	24 hours	
35 & 35m.	Mercury	P.G. or Teflon	HNO3 to pH < 2	28 days	
71. Revisi	Tin ter, February, 1996, No	P o. 482	HCl or $\rm HNO_3$ to pH <2	6 months	

Register, February, 1996, No. 482

DEPARTMENT OF NATURAL RESOURCES

 $\left(-\right)$

Ć

Parameter No./name 3, 5-8, 10, 12, 13, Metals: 19, 20, 22, 26, 29, except Cr VI, Sn. Hg, & B) 30, 32-31, 36, 37, 45, 17, 51, 52, 58-60, 62, 63, 70-72, 71, 75.		Container ¹	Preservation ^{2,3}	Maximum holding time ⁴	
		P,G	HNO ₃ to pH <2	6 months	
TABLE	C - Organic Tests ⁵ :				
IA.	Purgeable halocarbons	G, Teffon-lined septum	Cool, 4° C, 0.008% Na ₂ S ₂ O ₃ 5	14 days	
IB.	Purgeable aromatics	G, Teflon-lined septum	Ceol, 4° C, 0.008% Na ₂ S ₂ O ₃ ⁵ , HCl to pH < 2	14 days	
IC.	Acrolein and acryloni- trile	G, Tetion-lined septum	Cool, 4° C, 0.008% Na ₂ S ₂ O ₃ 5 Adjust pH to 4-5 ¹⁰	14 days	
11.	Phenols ¹¹	G, Teflon-lined cap	Cool, 4" C, 0.008% Na ₂ S ₂ O ₃ 5	7 days until ex- traction; 40 days after extraction	
tx.	Henzidines (Benzidine and 3,3- Dichloro- benzidine) ¹¹	G, Teflon-lined cap	Cool, 4' C, 0.608% $Na_2S_2O_3^5$	7 days after ex- traction13	
111.	Phthlate esters ¹¹	G, Teflon-lined cap	Cool, 4° C	7 days until ex- traction; 40 days after extraction	
IV.	Nitrosamines ^{11, 13}	G, Teflon-lined cap	Cool, 4° C, store in dark, 0.008% Na ₂ S2O3 ⁵	7 days until ex- traction; 40 days after extraction	
v.	PCBs ¹¹	G, Teflon-lined cap	Cool, 4° C	7 days until ex- traction; 40 days after extraction	
VI.	Nitroaromatics, cyclic ketones and isophorone ¹¹	G, Teflon-lined cap	Coo!, 4' C, store in dark, 0.008% Na ₂ S ₂ O3 ⁵	7 days until ex- traction; 40 days after extraction	
VII.	Polynuclear aromatic hydrocarbons ¹¹	G, Teflon-lined cap	Cool, 4° C, store in dark, 0,008% Na ₂ S ₂ O3 ⁵	7 days until ex- traction; 40 days after extraction	
VIII.	Haloethers ¹³	G, Teflon-lined cap	Cool, 4° C, 0.008% Na ₂ S ₂ O ₃ ⁵	7 days until ex- traction; 40 days aîter extraction	
1X.	Chlorinated hydrocar- bons ¹¹	G, Teflon-lined cap	Cool, 4° C	7 days until ex- traction; 40 days after extraction	
x.	Chorinated Dioxans and Furans	G, Teflon-lined cap	Cool, 4° C, 0.008% Na ₂ S ₂ O ₃ ⁵	7 days until ex- traction; 40 days after extraction	
TABL	E E - Pesticide Tests:				
	1-70.	Pesticides ¹¹ G, Teflon-lined cap	Cool, 4' C, pH 5-9 ¹⁵	7 days until ex- traction; 40 days after extraction	
		·	Register, Februa	ry, 1996, No. 48	

134-40 WISCONSIN ADMINISTRATIVE CODE

Parameter No./name		Container ¹	Preservation ^{2,3}	Maximum holding time ¹		
Таві	E F - Radiological Tests:					
1-5.	Alpha, beta, and ra- dium	P,G	HNO₃ to pH <2	6 months		

TABLE F NOTES

¹Polyethylene (P) or Glass (G). For microbiology, plastic sample containers must be made of sterilizable materials (polypropylene or other autoclavable plastic)

²All samples requiring preservation at 4° C must be cooled immediately after collection, and the temperature of the samples shall be documented upon receipt at the laboratory. If the samples are shipped in crushed or cube ice (not "blue ice" packs) and solid ice is still present in the cooler, the lab may simply report the samples as "received on ice". If the ice has melted, the lab must report the either the temperature of the meltwater or of a temperature blank. A temperature blank is defined as an aliquot of deionized water, in an appropriate sample container, which is transported along with the samples. If sampling teams use "blue ice" packs, it is necessary to pre-chill ali sample containers to at least 4 degrees celsius with ice or refrigeration prior to shipping. Since shipping simply with "blue ice" packs does not insure that samples are maintained at the appropriate temperatures, the sample collector must submit a temperature blank when using these ice packs for shipping. For composite chemical samples each aliquot should be preserve ach aliquot, then chemical samples may be preserved by maintaining at 4°C until compositing and sample splitting are completed.

³When any sample is to be shipped by common carrier or sent through the United States mail, it must comply with the Department of Transportation Hazardous Materials Regulations (49 GFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table J, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations of 0.04% by weight or less (pH about 1.96 or greater); Nitrie acid (HC)) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric acid (H_2SO_1) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); and Sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).

¹Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still be considered yalid. Virus samples can be stored indefinitely at -70° C. Samples used for toxicity tests are to be used for test initiation or for renewal of test solutions within 36 hours of collection as grab samples or after removal from composite samplers. For other composite samples, the holding time commences immediately after the samples are removed from the composite sampler. The time the sample spends in the sampler during collection does not count towards the maximum holding time. Samples for biological or chemical analysis may be held for longer periods than specified in this table only if the permittee or monitoring laboratory, has data on file to show that the specific types of samples under study are stable for the longer time, and has received a variance from the Regional Administrators. NR 219.05. Some samples may not be stable for the be sample for a shorter time if knowledge exists to show that this is necessary to maintain sample stability.

⁵Should only be used in the presence of residual chlorine.

⁶Maximum holding time is 24 hours when sulfide is present. Optionally all samples may be tested with lead acetate paper before pH adjustments in order to determine if sulfide is present. If sulfide is present it can be removed by the addition of cadmium nitrate powder until a negative spot testifs obtained. The sample is filtered and then NaOH is added to pH 12.

Samples should be filtered immediately on-site before adding preservative for dissolved metals.

'Guidance applies to samples to be analyzed by GC, LC, or GC/MS for specific compounds.

⁹Samples receiving no pH adjustment must be analyzed within seven days of sampling.

¹⁰The pH adjustment is not required if acrotein will not be measured. Samples for acrolein receiving no pH adjustment must be analyzed within 3 days of sampling.

¹¹When the extractable analytes of concern fall within a single chemical category, the specified preservation and maximum holding times should be observed for optimum safeguard of sample integrity. When the analytes of concern fall within two or more chemical categories, the sample may be preserved by cooling to 4°C, reducing residual chlorine with 0.008% sodium thiosulfate, storing in the dark, and adjusting the pH Register, February, 1996, No. 482

		newski strani pod stali na se na se	 				
					en en norde en Norde	ta Anna (
				• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
			 	··			
			 	•		1.00000	
·····						1	
	- 1	Charles and the second s	 		·		
	- 00 Č	n an	 				
		·	 				

DEPARTMENT OF NATURAL RESOURCES

134-41 NR 219

to 6-9; samples preserved in this manner may be held for seven days before extraction and for forty days after extraction. Exceptions to this optional preservation and holding time procedure are noted in footnote 5 (re the requirement for thiosulfate reduction of residual chlorine), and footnotes 12, 13 (re the analysis of benzidine).

 12 [f 1,2-diphenylhydrazine is likely to be present, adjust the pH of the sample to 4.0 \pm 0.2 to prevent rearrangement to benzidine,

¹³Extracts may be stored up to 7 days before analysis if storage is conducted under an inert (oxidant-free) atmosphere.

¹¹For the analysis of diphenylnitrosamine, add 0.008% Na₂S₂O₃ and adjust pH to 7-10 with NaOH within 24 hours of sampling.

¹³The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within 72 hours of collection. For the analysis of aldrin, add 0.008% Na₂S₂O₂.

NR 219.05 Alternate test procedures. Approvals of alternate test procedures for nationwide use and specific discharges are granted by EPA. The department may approve the use of an alternate test procedure on a case-by-case basis if the criteria for approval of the alternate procedure established in s. NR 149.12 are met. If the department or the EPA approves an alternate test procedure, it shall be considered equivalent to the approved method.

Note: The federal requirements for alternate test procedure approval are given in 40 CFR 136.5.

History: Cr. Register, August, 1976, No. 248, eff. 9-1-76; r. and recr. January, 1978, No. 265, eff. 2-1-78; renum. from NR 219.04 and am. Register, June, 1986, No. 366, eff. 7-1-86; r. and recr. Register, November, 1992, No. 443, eff. 12-1-92; am. Register, February, 1996, No. 482, eff. 3-1-96.

NR 219.06 Laboratory certification or registration. Bacteriological analyses of groundwater samples, and all radiological analyses shall be performed by the state laboratory of hygiene or at a laboratory certified or approved by the department of health and social services. Other laboratory test results, including effluent toxicity, submitted to the department under a WPDES permit shall be performed by a laboratory certified or registered under ch. NR 149. The following tests are excluded from this requirement:

(1) Temperature,

(2) Turbidity,

(3) Bacteria tests in wastewater effluent and sludges,

(4) pH,

(5) Chlorine residual,

(6) Specific conductance,

(7) Physical properties of soils and sludges,

(8) Nutrient tests of soils and sludges,

(9) Flow measurements.

History: Cr. Register, April, 1986, No. 364, eff. 8-28-86; renum. from NR 219.07 and am. (intro.) Register, November, 1992, No. 443, eff. 7-1-93; am. Register February, 1996, No. 482, eff. 3-1-96.

Register, February, 1996, No. 482