Chapter NR 219

ANALYTICAL TEST METHODS AND PROCEDURES APPLICABLE TO INTERIM EFFLUENT LIMITATIONS

(Wisconsin Pollutant Discharge Elimination System)

NR 219.01 NR 219.02 Purpose NR 219.05 Approval of alternate test procedures

Applicability Definitions NR 219.03

NR 219.04 Application for alternate test

procedures

Note: Pursuant to chapter 147 Wis. Stats. and under the procedure of section 227.027 Wis. Stats., the department of natural resources has promulgated interim effluent limitations which were effective February 28, 1975 and will remain in effect for one year. These interim effluent limitations will be periodically replaced by permanent limitations.

NR 219.01 Purpose. The purpose of this chapter is to establish analytical test methods and procedures applicable to interim effluent limitations for discharges from point sources as authorized by section 147.04(5), Wisconsin Statutes.

History: Cr. eff. 2-28-75.

NR 219.02 Applicability. The procedures prescribed herein shall, except as provided in NR 219.05, be used in the determination of concentrations and quantities of pollutant parameters as required for:

(1) An application submitted to the department for a permit under chapter 147, Wisconsin Statutes.

(2) Reports required to be submitted by dischargers in accordance with the conditions of issued permits.

History: Cr. eff. 2-28-75.

NR 219.03 Definitions. As used in this chapter:

(1) Standard Methods - means "Standard Methods for the Examination of Water and Waste Water," 13th Edition, 1971. This publication is available from the American Public Health Association, 1015 18th Street NW, Washington, D.C. 20036.

(2) ASTM - means "Annual Book of Standards, Part 23, Water, Atmospheric Analysis, 1972." This publication is available from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.

(3) EPA Methods - means "Methods for Chemical Analysis of Water and Wastes," 1971, Environmental Protection Agency, Analytical Quality Control Laboratory, Cincinnati, Ohio. This publication is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C. 20402 (Stock Number 5501-0067).

(4) Regional Administrator - the term "Regional Administrator" means the Regional Administrator of Region V, U.S. Environmental **Protection Agency.**

WISCONSIN ADMINISTRATIVE CODE

(4m) Copies of the publications identified above, and of the publications referred to in footnotes (3) through (7) of NR 219.06 are available for inspection at the offices of the department of natural resources, the secretary of state, and the revisor of statutes.

History: Cr. eff. 2-28-75.

192

NR 219.04 Application for alternate test procedures. (1) Any person may apply to the regional administrator for approval of an alternative test procedure.

(2) The applicant shall submit his application to the regional administrator through the department.

(3) An application for an alternate test procedure shall be made by letter in triplicate, and

(a) Provide the name and address of the responsible person or firm making the discharge (if not the applicant), the number of the existing or pending permit, the name of the issuing agency, and the discharge serial number,

(b) Identify the pollutant or parameter for which approval of an alternate testing procedure is being requested,

(c) Provide justification for using testing procedures other than those specified in NR 219, and

(d) Provide a detailed description of the proposed alternate test procedure, together with references to published studies of the applicability of the alternate test procedure to the effluents in question.

History: Cr. eff. 2-28-75.

NR 219.05 Approval of alternate test procedures. (1) The regional administrator has final responsibility for approval of any alternate test procedure.

(2) Within 30 days of receipt of an application, the department will forward such application, together with its recommendations, to the regional administrator. Where the director recommends rejection of the application for scientific and technical reasons which he provides, the regional administrator shall deny the application.

(3) Within 90 days of his receipt of an application for an alternate test procedure, the regional administrator will notify the applicant and the department agency of approval or rejection, or shall specify the additional information which is required to determine whether to approve the proposed test procedure.

History: Cr. eff. 2-28-75.

DEPARTMENT OF NATURAL RESOURCES 193

NR 219.06 - LIST OF APPROVED TEST PROCEDURE

Parameter and units		Method		References		
			Standard Methods	ASTM	EPA Methods	
Gener	al analytical methods:					
1.	Alkalinity as CaCO ₃ mg CaCO ₃ /liter.	Titration: electrometric, manual or automated method—	p. 370	p. 143	p. 6	
2. 3.	B.O.D. five day mg/liter. Chemical oxygen demand	methyl orange. Modified winkler or probe method Dichromate reflux.	p. 489 p. 495	p. 219	p. 8 p. 17	
4 . 5 .	(C.O.D.) mg/liter. Total solids mg/liter. Total dissolved (filterable) solids	Gravimetric 103-105°C. Glass fiber filtration 180°C.	p. 535		p. 280 p. 275	
6.	mg/liter. Total suspended (nonfilterable) solids	Glass fiber filtration 103-105° C.	p. 537		p. 278	
7.	mg/liter. Total volatile solids	Gravimetric 550° C.	p. 536		p. 282	
8.	mg/liter. Ammonia (as N) mg/liter.	Distillation—nesslerization or titration			p. 134	
9.	Kjeldahl nitrogen (as N) mg/liter.	automated phenolate. Digestion + distillation—nesslerization or titration automated digestion	p. 469		p. 141 p. 149 p. 157	
10.	Nitrate (as N) mg/liter.	phenolate. Cadmium reduction; brucine sulfate; automated cadmium or hydrazine reduction.	p. 458 p. 461	p. 124	p. 170 p. 175 p. 185	
11.	Total phosphorus (as P) mg/liter.	Persulfate digestion and single reagent (ascorbic acid), or manual digestion, and automated single reagent or stannous chloride.	p. 526 p. 532	p. 42	p. 235 p. 246 p. 259	
12.	Acidity mg CaCO ₃ /liter.	Electrometric end point or phenolphthalein end point.		p. 148		
13.	Total organic carbon (TOC) mg/liter.	Combustion—infrared method.1	p. 257	p. 702	p. 221	
14. 15.	Hardness—total mg CaCO ₃ /liter Nitrite (as N) mg/liter.	EDTA titration; automated colorimetric atomic absorption. Manual or automated colorimetric diagrammatic distribution of the second seco	p. 179	p. 170	p. 76 p. 78 p. 185	
	tical methods for trace meta		n 910		p. 195	
16. 17.	Aluminum—total ² mg/liter. Antimony—total ²	Atomic absorption. Atomic absorption.	p. 210		p. 98	
18.	mg/liter. Arsenic—total mg/liter.	Digestion plus silver diethyldithiocarbamate; atomic	p. 65		p. 13	
19.	Parium total mg/liter	absorption. ³	p. 62			
20.	Barium—total ² mg/liter. Beryllium—total ² mg/liter.	Atomic absorption. ⁴ Aluminum; atomic absorption.	p. 210 p. 67 p. 210			
21. 22.	Boron—total mg/liter. Cadmium—total ²	Curcumin. Atomic absorption; colorimetric.	p. 69 p. 210 p. 422	p. 692	p. 101	
23.	mg/liter. Calcium—total ² mg/liter.	EDTA titration; atomic absorption.	p. 422 p. 84	p. 692	p. 102	
24.	Chromium VI mg/liter.	Extraction and atomic absorption; colorimetric.	p. 429		p. 94	
25.	Chromium—total ² mg/liter.	Atomic absorption; colorimetric.	p. 210 p. 426	p. 692 p. 403	p. 104	
26. 27.	Cobalt—total ² mg/liter. Copper—total ² mg/liter.	Atomic absorption. ⁴ Atomic absorption; colorimetric.	p. 210	p. 692 p. 692	p. 106	
28.	Iron—total ² mg/liter.	do	p. 430 p. 210	p. 410 p. 692	p. 108	
29.	Lead-total ² mg/liter.	do	p. 433 p. 210 p. 436	p. 152 p. 692	p.110	
30.	Magnesium—total ² mg/liter.	Atomic absorption; Gravimetric.	p. 430 p. 210 p. 416 p. 201	p. 692	p. 112	
31.	Manganese—total ² mg/liter.	Atomic absorption.	p. 201 p. 210	p. 692	p. 114	
32. 33.	Mercury—total mg/liter. Molybdenum—total ² mg/liter.	Flameless atomic absorption. ⁵ Atomic absorption. ⁴				
34. 35.	Nickel—total ² mg/liter. Potassium—total ²	Atomic absorption; colorimetric. ⁴ Atomic absorption; colorimetric;	p. 413 p. 283	p. 692 p. 326	p. 115	
Register, July, 1975, No. 235 Environmental Protection						

194 WISCONSIN ADMINISTRATIVE CODE

101	11200011011				
	mg/liter.	flame photometric.	p. 285		
36.	Selenium-total mg/liter.	Atomic absorption. ³			
37.	Silver-total ² .	Atomic absorption.	p. 210	000	110
38.	Sodium—total ² mg/liter.	Flame photometric; atomic	p. 317	p. 326	p. 118
3 9 .	Thalliumtotal ² mg/liter.	absorption. Atomic absorption. ⁴			
40.	Tin-total ² mg/liter.	do			
41.	Titanium—total mg/liter.	do			
42.	Vanadium—total ²	Atomic absorption; ⁴ colorimetric.	p. 157		
43.	mg/liter. Zinc—total² mg/liter.	Atomic absorption; colorimetric.	р. 210 р. 444	p. 692	p. 120
			p. 444		
Analy	tical methods for nutrients,	anions, and organics:			
					- 140
44. 45	Organic nitrogen (as N) mg/liter.	Kjeldahl nitrogen minus ammonia nitrogen.	p. 468	- 40	р. 149 р. 235
45.	Ortho-phosphate (as P) mg/liter.	Direct single reagent; automated single reagent or stannous chloride.	р. 532	p. 42	p. 235 p. 246 p. 259
46.	Sulfate (as SO ₄) mg/liter.	Gravimetric; turbidimetric;	p. 331	p. 51	p. 286
		automated	p. 334	p. 52	p. 288
		colorimetricbarium			
		chloranllate. Titrimetric—iodine.	p. 551		p. 294
47.	Sulfide (as S) mg/liter.		-	0.01	p. 204
48. 49.	Sulfite (as SO ₀) mg/liter.	Titrimetric; iodide-iodate. do	p. 337	p. 261	
49. 50.	Bromide mg/liter. Chloride mg/liter.	do Silver nitrate; mercuric nitrate;	p. 96	p. 216 p. 23	p. 29
00,	emonue mg/men.	automated colorimetric-	p. 97	p. 20 p. 21	p. 31
		ferricyanide.	-		-
51.	Cyanide—total mg/liter.	Distillation—silver nitrate titration or pyridine pyrazolone	p. 397	p. 556	p. 41
52.	Fluoride mg/liter.	colorimetric. Distillation—SPADNS.	p. 171	p. 191	p. 64
01.	r toorrae mg, mer.	Distinution Stribito.	p. 174	p. 101	pior
53.	Chlorine—total residual	Colorimetric; amperometric	p. 382	p. 223	
	mg/liter.	titration.			
54.	Oil and grease mg/liter.	Liquid-Liquid extraction with trichlorotrifluoroethane.	p. 254	4.15	
55. 56.	Phenols mg/liter. Surfactants mg/liter.	Colorimetric, 4 AAP. Methylene blue colorimetric.	р. 502 р. 339	p. 445 p. 619	p. 232 p. 131
56. 57.	Algicides mg/liter.	Gas chromatography.	p. 559	p. 019	p. 151
58.	Benzidine mg/liter.	Diazotization-colorimetric.			
59.	Chlorinated organic	Gas chromatography."			
	compounds (except				
00	pesticides) mg/liter.				
60.	Pesticides mg/liter.	Gas chromatography. ⁶			
Analy	tical methods for physical ar	nd biological parameters:			
61.	Color platinum-cobalt	Colorimetric; spectrophotometric.	p. 160		p. 38
	units or dominant		p. 392		
	wave-length, hue, luminance, purity.				
62.	Specific conductance	Wheatstone bridge.	p. 323	p. 163	p. 284
	mho/cm at 25° C.	_	-	-	-
63.	Turbidity jackson units.	Turbidimeter.	p. 350	p. 467	p. 308
64.	Fecal streptococci bacteria number/100	MPN; membrane filter; plate count.	p. 689 p. 690		
	ml.	count.	p. 691		
			P		
See N	ote at end of Table I				
65.	Coliform bacteria (fecal)	MPN; membrane filter.	p. 669		
65.	number/100 ml.	Wir IN; membrane Inter.	p. 684		
66.	Coliform bacteria (total)	do	p. 664		
	number/100 ml.		p. 679		
Dadio	logical nonemotors				
Nauto	logical parameters:				
67.	Alpha—total pCi/liter.	Proportional counter; scintillation	p. 598	p. 509	
68.	Alpha_counting arrow	counter. do	p. 598	p. 512	
00.	Alpha—counting error pCi/liter.	uo	h. 190	p. 012	
69.	Beta-total pCi/liter.	Propertional courter +	p. 598	p. 478	
70.		Proportional counter.	p. 598	p. 478	
	Beta—counting error pCi/liter.		-	P. 110	
71.	Radium—total pCi/liter.	Proportional counter; scintillation	p. 611	p. 674	
		counter.	p. 617		

Register, July, 1975, No. 235 Environmental Protection 'A number of such systems manufactured by various companies are considered to be comparable in their performance. In additon, another technique, based on Combustion-Methane Detection, is also acceptable.

^aFor the determination of total metals the sample is not filtered before processing. Choose a volume of sample appropriate for the expected level of metals. If much suspended material is present, as little as 50-100 ml of well-mixed sample will most probably be sufficient. (The sample volume required may also vary proportionally with the number of metals to be determined.)

Transfer a representative aliquot of the well-mixed sample to a Griffin beaker and add 3 ml of concentrated distilled HNO₃. Place the beaker on a hotplate and evaporate to dryness making certain that the sample does not boil. Cool the beaker and add another 3 ml portion of distilled concentrated HNO₃. Cover the beaker with a watch glass and return to the hotplate. Increase the temperature of the hotplate so that a gentle reflux action occurs. Continue heating, adding additional acid as necessary until the digestion is complete, generally indicated by a light colored residue. Add (1:1 with distilled water) distilled concentrated HCl in an amount sufficient to dissolve the residue upon warming. Wash down the beaker walls and the watch glass with distilled water and filter the sample to remove silicates and other insoluble materials that could clog the atomizer. Adjust the volume to some predetermined value based on the expected metal concentrations. The sample is now ready for analysis. Concentrations so determined shall be reported as "total".

⁵See D.C. Manning, "Technical Notes", Atomic Absorption Newsletter, Vol. 10, No. 6 p. 123, 1971. Available from Perkin-Elmer Corporation, Main Avenue, Norwalk, Connecticut 06852.

'Atomic absorption method available from Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, USEPA, Cincinnati, Ohio 45268.

^{*}For updated method, see: Journal of the American Water Works Association 64, No. 1, pp. 20-25 (Jan. 1972) or ASTM Method D 3223-73, American Society for Testing and Materials Headquarters, 1916 Race St., Philadelphia, Pa. 19103.

^eInterim procedures for algicides, chlorinated organic compounds, and pesticides can be obtained from the Methods Development and Quality Assurance Research Laboratory, National Environmental Research Center, USEPA, Cincinnati, Ohio 45268.

'Benzidine may be estimated by the method of M.A. El-Dib, "Colorimetric Determination of Aniline Derivatives in Natural Waters", El-Dib, M.A., Journal of the Association of Othicial Analytical Chemists, Vol. 54, No. 6, Nov., 1971. pp. 1383-1387.

TAs a prescreening measurement.

History: Cr. eff. 2-28-75.