Chapter ILHR 20-25

APPENDIX

Wisconsin Department of industry. Labor and Human Relations

WISCONSIN ADMINISTRATIVE BUILDING PERMIT APPLICATION (Wis. Stats. 101.63 (7) \& 101.65 (3))

Submit to non-enforcing municipalities for new 1 - and 2 - family dwellings.
SEE INSTRUCTIONS ON BACK OF YELLOW COPY.
Ithe intormation you provide may be used by other government agency programs fifivacy law, s. 15.04 (1) (m)I.

| 6. PROIECT AREA,,$~$ |
| :--- | :--- | :--- |

I present that afl the above information is correct, and understand that the issuance of this permit is for administrative purposes only. Onsite construction inspections will not and shall not be performed by the municipality which has not assumed jurisdiction per s. 101.65, Wis. Stats. I understand the Uniform Dwelling Code, Chapters ILHR $20-25$, still applies to all new 1 - and 2 -family dwellings and must be complied with. 1 realize the issuance of this permit does not relieve me of compliance with other applicable codes and ordinances.

Applicant's Signature
Date Signed
MUST BE COMPLETED BEFORE SUBMITTING TO DILHR:

ISSUING JURISDICTION:	\square Town \square Village	\square City \square	County of:
MUNICIPALITY NUMBER:	$\stackrel{ }{-}$	Where O welling Located	PEES;
PERMITISSUED BY: $\quad \therefore$			DATEISSUED

[^0]

Inspections			
PHASE	RGH	FNL	$\begin{aligned} & \text { ERO } \\ & \text { SION } \end{aligned}$
FOOTING			
FOUNDATION			
ESMT DRAIN TILES			
CONSTRUCTION			
PLUMBING			
HEAT/NENT/AC			
ELECTRICAL			
INSULATION			
OCCUPANCY		.	

Keep this card posted until final inspection has been made. Inspections shall be made 48 hrs. in advance. Work shall not proceed until the inspector has approved the various stages of construction or the 48 business hr. period since notilication has elapsed. This permit will expire 24 months after the date of issuance if the building's exterior has not been completed. \qquad (WI Stats. 101.63)

WISCONSIN UNIFORM

 bUILDING PERMIT' \square const \square hvac \square elec \square plumb \square erosion Project:| Issued to | OWNER (AGENT) | | | |
| :---: | :---: | :---: | :---: | :---: |
| | BUILDING STTE ADDRESS | | | |
| | CITY, VILLAGE TOWN. COUNTY | | | alfix uniform permil seal here (when appltcable) Seal No. \qquad |
| | Issue | PERSON ISSUING | | CERT. NO. |
| | | DATE ISSUED | TELEPHONE NUMBER | |

Comments:

NOTICE OF NONCOMPLIANCE: This issuing jurisdiction shat notify the applicant in witing of any violations to be corrected. All clled volations shall be corrected within 30 days atter notification, unless extension of time is granted.

Petition For Variance Information \& Instructions - ILHR 3

In instances where exact compliance with a particular code requirement cannot be met or alternative designs are desired, the Division has a petition for variance program where it reviews and considers acceptance of alternatives which are not in strict conformance with the letter of the code, but which meet the intent of the code. A variance is not a waiver from a code requirement. The pelitioner must provide an equivalency which meets the intent of the code section petitioned to obtain a variance. Documentation of the rationale for the equivalency is requested below. Failure to provide adequate intormation may delay your petition. Pictures, sketches, and plans may be submitted to support equivalency. If the proposed equivalency does not adequately safeguard the health, safety, and welfare of occupants, frequenters, firefighters, etc. the variance will be denied. NOTE: A SEPARATE PEIITION IS REQUIRED FOR EACH BULLDING AND EACH CODE ISSUE PETITIONED (i.e., a window size issue cannot be processed on the same petition as a stair width issue). It should be noted that a petition for variance does not take the place of any required plan review submittal.

The Division is unable to process petitions for variance that are not property completed. Before submitting the application, the following items should be checked for completeness in order to avoid delays:

- Petilioner's name (lyped or prinled)
- Petitioner's signature

The Pelition For Variance Application must be signed by the owner of the building or project unless a power of attorney is submitted.

- Notary Public signature with affixed seal
- Analysis to establish equivalency, including any pictures, illustrations or sketches of the existing and proposed conditions to clearly convey your proposal to the reviewer.
- Proper fee
- Any required position statements by fire chief or municipal official

A position statement from the chief of the local fire department is required for fire safety issues. No position statement is required for nonfire topics such as sanitary, energy conservation and barrier free environments. For rules relating to one and two-family dwelings, only a position statement from the local enforcing municipality is required. Position statements must be completed and signed by the appropriate fire chiel or municipal oflicial. See the back of SBD-9890, Petition For Variance Application form for these position statement forms. Signatures or seals on all documents must be originals. Photocopies are not acceptable.

Contact numbers and fees for the Division's petition for variance program are as follows:

Chaplers ILHR 20-25, Unitorm Dwelling Code (608) 267-5113 $\$ 125.00$

Ciaplers ILHR 67-68, Rental Unit Energy Eliciency Code (608) 266-1930 $\$ 125.00$
Chapters :LHR 50-64, Commercial Buitding Code (608) $267.9152 \ldots . .$.

- The cities of Milwaukee and Madison may process petitions for variances from chapters ILHA 50 through 64 requirements on projects in their jurisdiction.

Chapter ILHR 70, Historic Building Code (608) 266-7849 (608) 266-7849 $\$ 300.00$
All other chapters . $\$ 200.00$
Boilers and Pressure Vessels . (608) $266-7548$
Electrical . (608) 266-5649
Elevalors . (608) 267.9606
Flamnable Liquids . (608) 266-1542
Priority Review: Does not apply to Uniform Dwelling Code or Historic Double Builving Code issues which already are treated as a priorily. Above Amounts

Except for special cases, the Division will review and make a determination on a pelition for variance within 30 business days of receipt of all calculations, documents, and fees required for the review. Uniform Dwelling Code petilions will be processed within 5 business days. Priority petitions will be processed within 10 business days.

Petitions for variance shall be submitted to:

> DlLHR Safety and Buildings
> 201 East Washington Avenue
> P.O. Box 7969
> Madison, Wisconsin 53707

General Plumbing or Private Sewage petitions must be submitted on a different form. For information or to acquire the form call the Madison office, (608) 266-3815, or any of the other full-service offices identified below.

Hayward Otfice	La Crosse Office		Shawano Office	Waukesha Office	
209 W. First St. Hwy 63	2226 Rose		1053A E. Green Bay St.	401 Pilot Ct	Suite C
Route 8 Box 8072	La Crosse V	54603	P.O. Box 434	Waukesha	H 53188
Hayward WI 54843			Shawano WI 54166		
Telephone: (715) 634-4870	Telephone:	(608) 785-9334	Telepfone: (715) 524-3626	Telephone:	(414) 548-8606
Fax: (715) 634-5150	Fax:	(608) 785-9330	Fax: (7t5) 524-3633	Fax:	(414) 548-8614

ILHR 20-25 Appeadix

Wisconsin Department of industry, : Safely \& Buifdings Division
Labor and Human Relations

Dept. Dse Only	\ddots	
Plan No.		
Amount Pald		

Petition For Variance Application

201 E. Washingion Ave.
P.O. Box 7969

Madison, WI 53707
Telephone: (608) 266-3151

1. Owner Information	2. Project Information	3. Designer Information	
Natim?	Einkimj Oxauxacy Chaplet(s) arid Use	Desuricr	Retystrater ${ }^{\text {a }}$
Comatary Namas	Tonata Name til aryy	Dosyde Firm	
Numity arx Sitcat		Nanuber and Streel	
City Sata ank 210 Corle	\square City \square villas $\square^{\text {Townsthp }}$ of	Cily, Slute and Żı Cotse	
Cumen Pestith	Condity of	Contacl Person	
	Prop. ID \# (tax parece - conlact county)	Toleplonio Nurliber ()	$\begin{aligned} & \text { Far Nurtiber } \\ & 1 \quad 1 \\ & \hline \end{aligned}$
4. Plan Review Status Roview By: [] State [] Municipatily Plen Number \qquad	Orimolf Peliminary design Approved, requesting revision Submitted with petition	Atready btriltEvill according to otder code but must be brought into compliance with current codePlan will be submitted atter petilion deleminationOther	

5. State the code sectinn being pestitioned and the specific condition or issue you are requesting be covered under this petition for variance.
\qquad
\qquad
6. Reason why complance with the code cannot be attained without the variance.
\qquad
\qquad
7. State your propused means and rationale of providing equivalent degree of health, safely, or welfare as addressed by the code section petitioned.
\qquad
\qquad
8. List attachments to be considered as part of the petitioner's statements (i.e., model code sections, test reports, research aticles, expert opinion, previously approved variances, pictures, plans, skelches, etc.)

Verification By Owner - Petition is valid only if notarized with aflixed seal and accompanied by revtew fee (See Section it tha 2.52 fur complete fee entormations)
Note: Petitioner must be the owner of the building or project. Tenants, agents, designers, contractors, attorneys, etc., shall not sign petition unless Power of Atlorney is submilted with the Petition for Variance Application.

Pefitioner's Name (type or prints	 		
	Subs:rited and swort to belore be thas date	Noizis Putbect	$\int_{\text {My curtiruss }}^{\text {oxpros tal }}$
Complete Other Side			SBD. 9890 (R 05/94)

Chumers Natime	Profect Localug	Plar Nimber \qquad

Fire Department Position Statement
 To be completed for variances requested from ILHR $50-64$, ILHR 10, and other life related requirements

Page 2 of

I have read the petition for variance and recommend: (Check appropriate box)
\square ApprovalConditional ApprovalDenial
\square No Comment

Explanation for recommendation including any conflicts with local rules and regulations and suggested conditions:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Teteptionis Number
Fuc Clitil or Desigree Suthetira	Date Sunt

Municipal Building Inspection Recommendation

To be completed for variances requested Irom ILHR 20-23, also to be used if ILHR 50-64 plan review is by municipality or orders are written on the buildirg under construction; optional in other cases.
I have read the petition for variance and recommend: (check appropriale box)

- ApprovalCondilional ApprovalDenial
\square No Comment

Explanation for recommendation including any conflicts with local rules and regulations and suggested conditions:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Teloptere Nitriber
	Date Sxymod

FASTEAER SCEEDULE TABLE

Description of Burlding Materials／Connection	Number and Type of Fastener ${ }^{1234}$
Joist to sill or ginder，toe nail	2－16d，3－8d
Bridging to joist，toe nail each end	$2-8 \mathrm{~d}$
$1^{+} \times 6^{*}$ sublioor or less to each joist，face nail	2－8d or 2 staples，1\％
Wider than $1^{\prime \prime} \times 6^{+\prime}$ subfloor to each joist，face nail	3－8d or 4 staples， 14
2^{\sim} sublloor to joist or girder，blind and face nail	2－16d
Sole plate to joist or blocking，face mail	16d at 16^{*} o．c．
Top or sole plate to stud，end nail	2－16d
Stud to sole plate，toe nail	4－8d or 3－16d
Doubled studs，face nail	16d at $24^{\prime \prime}$ o．c．
Doubled top plates，frest mail	16d at 16° o．c．
Top plates，laps and intersections，face nail	$2-16 d$
Continuous header，two pieces	16d at 16° o．c．alouge each edge
Ceiling joists to plate，toe nail	2－16d，3－8d
Continuous header to stud，toe nail	48d
Ceiling joist，laps over partitions，face nail	3－16d
Ceiling joist to parallel rafters，face nail	3－16d
Rater to plate，toe nail	2－16d，3－8d
1 ＂brace to each stud and plate，face nail	2－8d or 2 ataples， $17 / 4$
$1^{\prime \prime} \times 6^{*}$ alheathing to each bearing，face nail	2－8d or 2 gtaples，17\％
$1^{*} \times 8^{* \prime}$ sheathing to each bearing，face nail	2－8d or 3 staples， 17%
Wider than $1^{\prime \prime} \mathrm{I} 8^{\prime \prime}$ aheathing to each bearing，face nail	3－8d or 4 staples， 174
Built－rp comer studs	16 d at 30° o．e．， 16 d at 24^{*} o．e．
Built－up girder and beams	20d at 32＂o．c．at top and bottom and staggered 2－20d at ends and at each splice
2－inch planks	2－16d at each bearing
Roof rafters to ridge，walley or hip rafters，toe nail	4．16d
Roof rafters to ridge，palley or hip raters，face nail	3－16d
Plywood subiloor，roof and wall sheathing（to framing）${ }^{6}$	
\％－ineh to 5／16－inch	64 ${ }^{5}$ or staple
\％－inch to $\mathrm{Y}_{\text {rinch }}$	8d smooth or common， 6d deformed，or staple
\％－inch to 1－inch	885
12－ineh to 1\％－inch	10d smooth or commen，or \＆deformed
Fibertoard sheathing ${ }^{7}$	
Kinch	ed common or staple， $1{ }^{1 / 5}$ long or roofing nail ${ }^{11}$
25／32－inch	\＆d common or staple， $13^{\prime \prime}$ long or roofing nail ${ }^{11}$
Gypsum sheathing，${ }^{1 / 2}$	1\％galvanized roofing matil，or 6d commota，or staple
Particleboard wall gheathing（to framing）${ }^{6}$	
＊inche to 1 －inch	6d common
\％－inch to \％－inch	8 d comimon or staple
Insulated sheathing	11－gauge roofing nails，68，84，or staple
Combioation subfloor underlayment（to framing）${ }^{6}$ ．．	
Y－inch and less	6 d deformed
\％－inch to 1－inch	8 d deformed
1\％－inch to 1灰－inch	10d smoth ${ }^{9}$ or common or 8d deformed ${ }^{9}$
Panel siding（to framing）${ }^{10}$	
孝保ch or less 4 －inch	$6 d$ 8 d

${ }^{1}$ All nails are amooth－common，bor or deformed shank except where otherwise stated．
${ }^{2}$ Nail is a general description and may be Thead，modified round head or ronnd head
${ }^{3}$ Staples are 16 －gauge wire and have a minimum 7／16－inch o，d．crowh width
4 Common or box nails may be used except where otherwise stated．
${ }^{5}$ Common or deformed shank
${ }^{6}$ Nails spaced at 6 inches on center at edpes， 12 inches at intermediate supports（ 10 inches at internediate supports for floors），except 6 inches at all supports where spans are 48 inches or more．
${ }^{7}$ Nails spaced at 3 inches on center at edges， 6 inches at internediate supports．
${ }^{8}$ Nails spaced at 4 inches on center at edges， 8 inches at intermediate supports．
${ }^{9}$ Nails spaced at 6 inches on center at edges and at intermediate supports．
${ }^{10}$ Cormosion－resistant siding and casing nails．
${ }^{11}$ Galvanized roofing nails with 7／16－inch diameter head and 1／－inch length for $\%$－inch sheathing and 1%－inch for $25 / 32$－inch sheathing．

APPENDIX A COMMENTARY

A. 1 Floor Joists

A.1.1 Floor Joists with L/360 Deflection Limitations

Tables F-1 through F-7 list spans for floor joists, used over a single span, with calculations based on modulus of elasticity, E, and the required bending design values, F_{b}, shown. Floor joist spans are determined based on a deflection limitation of $L / 360$, where L is the span in inches. The deflection equation for a simple span beam with uniformly distributed load is:

$$
\Delta_{\max }=\frac{5 w L^{4}}{384 E I}
$$

[Eq. A.1-1]

Since $\Delta_{\max } \leq \mathrm{L} / 360$ this equation can be rewritten to solve for L as follows:

$$
L=\sqrt[3]{\frac{384 \mathrm{EI}}{5 w(360)}}
$$

[Eq. A.1-2]

The uniform load, w, is based on the live load and joist spacing. The moment of inertia, I, is based on the joist size.

The required bending design value, F_{b}, is determined based on the calculated span. Note that the maximum moment, $M_{\text {max }}$, of a single span beam with uniform load is calculated as:

$$
\begin{equation*}
M_{\max }=\frac{w L^{2}}{8} \tag{Eq.A.d-3}
\end{equation*}
$$

where the uniform load, w, is based on the total dead plus live load and joist spacing. The actual bending stress in a beam is calculated as $f_{b}=M / S$ where S is the section modulus of the joist. The allowable bending design value, F_{b}, is based on a futly supported member, properly sheathed and nailed on the top edge of the joist. Since the actual
stress must be less than the allowable bending design value, F_{b}, the allowable bending design value can be calculated as:

$$
\begin{equation*}
F_{b}=\frac{w L^{2}}{8 \mathrm{~S}} \tag{Eq.A.1-4}
\end{equation*}
$$

A.1.2 Floor Joists with L/480 or L/600 Deflection Limitations

Most codes require a minimum defiection limitation of $\mathrm{L} / 360$ for floor joists. In cases where a stricter deflection limit is desired, and the length shown is controlled by the $\mathrm{L} / 360$ deflection limit, the tabulated span lengths may be adjusted by the factors shown as follows:

Deflection Limit	Adjustment Factor	
	$\mathrm{L} / 480$	0.91
$\mathrm{~L} / 600$	0.84	

A. 2 Ceiling Joists

Tables $\mathrm{C}-1$ and $\mathrm{C}-2$ list spans for ceiling joists used over a single span with calculations based on E and the required F_{b} values shown. The spans and required bending design values are determined from the same equations for a single span, uniformly
loaded beam as shown above for single span floor joists. The only difference in design criteria is L/240 deflection limitations for ceiling joists supporting drywall ceilings which are typically required by building codes. The allowable bending design value, F_{b}, is based on a fully supported member, properly sheathed and nailed on one edge of the joist.

A. 3 Rafters

A.3.1 Rafters with L/240 Deflection Limitations

Tables R-1 through R-12 list spans for rafters with deflection limitations of $L / 240$, used over a single span with calculations based on F_{b} values and the required E values shown. The allowable bending design value, F_{5}, is based on a fully supported member, properly sheathed and nailed on the top edge of the rafter. Generally, a deflection limitation of L/240 applies to rafters with a drywall ceiling attached to the underside (e.g., cathedral ceilings).

The maximum moment for a single span beam with a uniform load is defined above. This equation can be rewritten to solve for L as follows:

$$
\begin{equation*}
L=\sqrt{\frac{8 F_{b} S}{w}} \tag{Eq.A,3.1-1}
\end{equation*}
$$

The uniform load, w, is based on the total dead plus live load and joist spacing.

The required modulus of elasticity, E, is determined based on this calculated span as follows:

$$
\begin{equation*}
E=\frac{5 W L^{3}(240)}{384 \mathrm{I}} \tag{Eq.A.3,1-2}
\end{equation*}
$$

The uniform load, w, is based on the live load and joist spacing.

A.3.2 Rafters with L/180 Deflection Limitations

Tables R-13 through R-24 list spans for rafters with deflection limitations of L/180, used over a single span with calculations based on F_{b} values and the required E values shown. Calculations for span
and required modulus of elasticity are the same as those for single span beams with deflection limitations of L/240, except that 180 is substituted for 240 in the numerator of Equation A.3.1-2. Generally, a deflection limitation of $L / 180$ applies to rafters without a drywall celling attached to the underside. Some governing building codes also consider the slope of the rafter in determining deflection limitations, and only allow L/ 180 deflection limitations for rafters with slopes greater than 3 in 12 and no ceiling attached.

A.3.3 Roof Loads

Section 6 outlines adjustment factors for determining rafter spans and required E values for roof live loads of 12 psf or 16 psf . The tabuiated spans are modified by the square root of the ratio of the total uniform load at 20 psf and the total uniform load at the reduced level (12 or 16 psf). This is based on Equation A.3.1-1 which is used to calculate the span of a rafter based on the square root of the total uniform load.

The E values are adjusted based on the modified span as noted above and the uniform live load ratio. Based on Equation A.3.1-2:

[Eq. A.3.3-I]

[Eq. A.3;3-2]
where subscript 1 denotes variables associated with the 20 psf uniform live load and subscript 2 denotes variables associated with the uniform live load at the reduced level. LL is the uniform live load and DL is the uniform dead load. All other variables are as previously defined in A.3.

A. 4 Compression Perpendicular to Grain Design Requirements

Compression perpendicular to grain is also a design consideration for joists and rafters. Required compression perpendicular to grain design values
are tabulated in Table 9.1. These values are calculated assuming a bearing width of $1.5^{\prime \prime}$, a total ioad of 66.67 plf , and the calculated span. The 66.67 plf total load is based on a 40 psflive load and 10 psf dead load on joists at $16^{\prime \prime}$ on center, which is a typical condition of use. Alternate $\mathrm{F}_{6 \perp}$ values are possible by adjusting the tabulated values indirect proportion to the desired load. Adjustment factors for various loads and spacings are tabulated in Table 9.2 for convenience. Required compression design values perpendicular to grain are also applicable to bearing plates.

A. 5 Lumber Design Values

The spans for nominal 2×5 joists or rafters are 82 percent of the spans tabulated for the same spacing of nominal 2×6 joists or rafters. For each joist or rafter spacing, the values of E for 2×5 's are the same as the tabulated E values for 2×6 's. The values of F_{b} for 2×5 's shall be determined by multiplying the tabulated F_{b} values for $2 \times 6^{2} \mathrm{~s}$ by 1.077 .

A. 6 Load Requirements

Applicable design criteria for each condition of use appear at the top of each table. While these criteria are directed principally to residential construction they are suitable for other occupancies having similar conditions of loading. Examples include, but are not limited to, assembly areas with fixed seats, cornices, fire escapes for single family residential buildings, cell blocks of penal institutions, multiple family dwelling units and hotel guest rooms. Check governing building code requirements for other applicable occupancies. Tabulated spans for rafters also apply to other types of occupancy, since the occupancy has little bearing on roof loading.

A. 7 Support Requirements

Adequate support shall be provided for all joists and rafters. Ridge beams shall be installed at roof peaks, and rafters shall bear directly on the ridge beam or be supported by hangers or framing anchors. Ceiling joists shall not be required when properly designed ridge beams are used.

A ridge board shall be permitted to be substituted for a ridge beam when the roof slope equals or exceeds 3 in 12 , except that ridge beams shall be required for cathedral ceilings. Ridge boards shall be at least 1 inch nominal in thickness and not less than the depth of the cut end of the rafter. Rafters shall be placed directly opposite each other, and ceiling joists shall be installed parallel with rafters to provide a continuous tie between exterior walls.

A. 8 Repetitive Member Use

Repetitive member use is that condition where framing members such as joists, rafters, studs, planks, decking or similar members are in contact or spaced not more than 24 inches on-center, are not less than 3 in number and are joined by floor, roof or other load-distributing elements adequate to support the design load. Bending design values $\left(F_{b}\right)$ for such use are 15 percent greater than for singlemember use. Table W-1 of Design Values for Joists and Rafters, a supplement to these tables, provide bending design values for repetitive member use of joists and rafters.

A. 9 Load Duration

For joists and rafters, bending design values (F_{F}) are adjusted for load duration by the following factors:
1.00 for 10 years (normal) duration, as for occupancy live load,
1.15 for 2 months duration, as for snow,
1.25 for 7 days duration, as for construction loading.

FLOOR JOISTS WITH $/ 360$ DEFLECTION LIMITATIONS

Table No.	Live Load (psf)	Dead Load (psf)	Material or Occupancy
F-2	40	10	Decks and all rooms except those used for sleeping areas and attic floors

1. Dead load includes the weight of the framing members

CEILING JOISTS WITH L/240 DEFLECTION LIMITATIONS

| Table
 No. Live
 Load
 (psi) Dead $^{\text {L }}$
 Load
 (psf) Material or Occupancy
 C-1 10 5 Drywall ceiling attached no attic storage
 C-2 20 10 Drywall ceiling attached, limited attic storage where development of
 future rooms is not possible |
| :---: | :---: | :---: | :--- |

1. Dead load includes the weight of the framing members

RAFTERS WITH L/240 DEFLECTION LIMITATIONS

(Drywall ceiling attached to underside of rafter)

Table No.	Live Load (psf)	Dead Load (psf)	Material or Occupancy
R-2	30	10	Light roof (up to 2 courses of asphalt shingles, or wood shakes/shingles)
R-3	40	10	Light roof (up to 2 courses of asphalt shingles, or wood shakes/shingles)
R-10	30	20	Heavy roof covering (3" clay book tile)
R-11	40	20	Heavy roof covering (3" clay book tile)

1. Dead load includes the weight of the framing members

RAFTERS WITH L/180 DEFLECTION LIMITATIONS (No drywall ceiling attached to underside of rafter)

Table No.	Live Load (psf)	Dead ${ }^{\text {L }}$ Load (psf)	
R-14	30	10	Light roof (up to 2 courses of asphalt shingles, or wood shakes/shingles)
R-15	40	10	Light roof (up to 2 courses of asphalt shingles, or wood shakes/shingles)
R-22	30	20	Heavy roof covering (3" clay book tile)
R-23	40	20	Heavy roof covering (3" clay book tile)

1. Dead load includes the weight of the framing members

TABLE C-1 CEILING JOISTS WITH L/240 DEFLECTION LIMITS																			
DESIGN CRITERIA: Deflection - For 10 paf liva lomd. Limited to tpan in inches divided by 240. Strength - Live Lond of 10 paf plus dead load of S paf determines the required fiber atress value.																			
		Modulus of Elasticity, E, in 1,000,000 psi																	
		0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	
2x 4	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.2 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 9-10 \\ & 8-11 \\ & 8-5 \\ & 7-10 \end{aligned}$	$\begin{aligned} & 10-3 \\ & 9-4 \\ & 8-9 \\ & 8-1 \end{aligned}$	$\begin{gathered} 10.7 \\ 9-8 \\ 9.1 \\ 8.5 \end{gathered}$	$\begin{aligned} & 10-11 \\ & 9-11 \\ & 9-4 \\ & 8-8 \end{aligned}$	$\begin{aligned} & 11-3 \\ & 10-3 \\ & 9-8 \\ & 8-11 \end{aligned}$	$\begin{aligned} & 11-7 \\ & 10-6 \\ & 9-11 \\ & 9-2 \end{aligned}$	$\begin{array}{r} -11.10 \\ 10-9 \\ 10-2 \\ 9.5 \end{array}$	$\begin{aligned} & 12.2 \\ & 15-0 \\ & 10-4 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 12-5 \\ & 11-3 \\ & 10-7 \\ & 9-10 \end{aligned}$	$\begin{aligned} & 12-8 \\ & 11-6 \\ & 10-10 \\ & 10-0 \end{aligned}$	$\begin{aligned} & 12-11 \\ & 11-9 \\ & 11-0 \\ & 10-3 \end{aligned}$	$\begin{aligned} & 13-2 \\ & 11.11 \\ & 11-3 \\ & 10-5 \end{aligned}$	$\begin{aligned} & 13-4 \\ & 12-2 \\ & 11-5 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 13-7 \\ & 12-4 \\ & 11.7 \\ & 10-9 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 12.9 \\ & 11-9 \\ & 10-11 \end{aligned}$	$\begin{aligned} & 14-0 \\ & 12-9 \\ & 12-0 \\ & 11-1 \end{aligned}$	$\begin{aligned} & 14-2 \\ & 12-11 \\ & 12-2 \\ & 11-3 \end{aligned}$	
2×6	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.2 \\ & 24.0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 15-6 \\ & 14-1 \\ & 13-3 \\ & 12-3 \end{aligned}\right.$	$\begin{aligned} & 16-1 \\ & 14.7 \\ & 13-9 \\ & 12-9 \end{aligned}$	$\begin{aligned} & 16.8 \\ & 15-2 \\ & 14-3 \\ & 13-3 \end{aligned}$	$\begin{aligned} & 17-2 \\ & 15-7 \\ & 14-8 \\ & 13-8 \end{aligned}$	$\begin{aligned} & 17-8 \\ & 16-1 \\ & 15-2 \\ & 14-1 \end{aligned}$	$\begin{aligned} & 18-2 \\ & 16-6 \\ & 15-7 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 16-11 \\ & 15-11 \\ & 14-9 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 17-4 \\ & 16-4 \\ & 15-2 \end{aligned}$	$\begin{aligned} & 19-6 \\ & 17-8 \\ & 16-8 \\ & 15-6 \end{aligned}$	$\begin{aligned} & 19-11 \\ & 18-1 \\ & 17-0 \\ & 15-9 \end{aligned}$	$\begin{aligned} & 20-3 \\ & 18-5 \\ & 17-4 \\ & 16-1 \end{aligned}$	$\begin{aligned} & 20-8 \\ & 18-9 \\ & 17-8 \\ & 16-4 \end{aligned}$	$\begin{aligned} & 21-0 \\ & 19-1 \\ & 17-11 \\ & 16-8 \end{aligned}$	$\begin{aligned} & 21-4 \\ & 19-5 \\ & 18-3 \\ & 16-11 \end{aligned}$	$\begin{aligned} & 21-8 \\ & 19-8 \\ & 18-6 \\ & 17-2 \end{aligned}$	$\begin{aligned} & 22-0 \\ & 20-0 \\ & 18-10 \\ & 17-5 \end{aligned}$	$\begin{aligned} & 22-4 \\ & 20-3 \\ & 19-1 \\ & 17-8 \end{aligned}$	
2×8	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.2 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 20-5 \\ & 18-6 \\ & 17-5 \\ & 16-2 \end{aligned}$	$\begin{aligned} & 21-2 \\ & 19-3 \\ & 18-1 \\ & 16-10 \end{aligned}$	$\begin{aligned} & 21-11 \\ & 19-11 \\ & 18-9 \\ & 17-5 \end{aligned}$	$\begin{aligned} & 22-8 \\ & 20-7 \\ & 19-5 \\ & 18-0 \end{aligned}$	$\begin{aligned} & 23-4 \\ & 21-2 \\ & 19-11 \\ & 18-6 \end{aligned}$	$\begin{aligned} & 24-0 \\ & 21-9 \\ & 20-6 \\ & 19-0 \end{aligned}$	$\begin{aligned} & 24-7 \\ & 22-4 \\ & 21-0 \\ & 19-6 \end{aligned}$	$\begin{aligned} & 25-2 \\ & 22-10 \\ & 21-6 \\ & 19-11 \end{aligned}$	$\begin{aligned} & 25.8 \\ & 23-4 \\ & 21-11 \\ & 20-5 \end{aligned}$	$\begin{aligned} & 23-10 \\ & 22-5 \\ & 20-10 \end{aligned}$	$\begin{aligned} & 24-3 \\ & 22-10 \\ & 21-2 \end{aligned}$	$\begin{aligned} & 24-8 \\ & 23-3 \\ & 21-7 \end{aligned}$	$\begin{aligned} & 25-2 \\ & 23-8 \\ & 21-11 \end{aligned}$	$\begin{aligned} & 25-7 \\ & 24-0 \\ & 22-4 \end{aligned}$	$\begin{aligned} & 25-11 \\ & 24-5 \\ & 22-8 \end{aligned}$	$\begin{aligned} & 24-9 \\ & 21-0 \end{aligned}$	$\begin{aligned} & 25-2 \\ & 23-4 \end{aligned}$	
2×10	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.2 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 26-0 \\ & 23-8 \\ & 22-3 \\ & 20-8 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 23-1 \\ & 21-6 \end{aligned}$	$\begin{aligned} & 25-5 \\ & 23-11 \\ & 22-3 \end{aligned}$	$\begin{aligned} & 24-9 \\ & 22-11 \end{aligned}$	$\begin{aligned} & 25-5 \\ & 23-8 \end{aligned}$	24-3	24-10	25-5	26-0									
$\begin{aligned} & F_{b} \\ & F_{b} \\ & F_{b} \\ & F_{b} \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.2 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 71! \\ & 783 \\ & 832 \\ & 896 \end{aligned}$	$\begin{aligned} & 769 \\ & 847 \\ & 900 \\ & 969 \end{aligned}$	$\begin{aligned} & 825 \\ & 909 \\ & 965 \\ & 1040 \end{aligned}$	$\begin{gathered} 880 \\ 968 \\ 1029 \\ 1108 \end{gathered}$	$\begin{gathered} 932 \\ 1026 \\ 1090 \\ 1174 \end{gathered}$	$\begin{gathered} 983 \\ 1082 \\ 1150 \\ 1239 \end{gathered}$	$\begin{aligned} & 1033 \\ & 1137 \\ & 1208 \\ & 1302 \end{aligned}$	$\begin{aligned} & 1082 \\ & 1191 \\ & 1265 \\ & 1363 \end{aligned}$	$\begin{aligned} & 1129 \\ & 1243 \\ & 1321 \\ & 1423 \end{aligned}$	$\begin{aligned} & 1176 \\ & 1294 \\ & 1375 \\ & 1481 \end{aligned}$	$\begin{aligned} & 1221 \\ & 1344 \\ & 1429 \\ & 1539 \end{aligned}$	$\begin{aligned} & 1266 \\ & 1394 \\ & 1481 \\ & 1595 \end{aligned}$	$\begin{aligned} & 1310 \\ & 1442 \\ & 1533 \\ & 1651 \end{aligned}$	$\begin{aligned} & 1354 \\ & 1490 \\ & 1583 \\ & 1706 \end{aligned}$	$\begin{aligned} & 1396 \\ & 1537 \\ & 1633 \\ & 1759 \end{aligned}$	$\begin{aligned} & 1438 \\ & 1583 \\ & 1682 \\ & 1812 \end{aligned}$	$\begin{aligned} & 1480 \\ & 1629 \\ & 1731 \\ & 1864 \end{aligned}$	
Note: The required bending design value, Fy in pounds por square inch in shown at the bottom of ctach tublo and it applicebla to all lumber sizes shown. Spans are shown in tectinches and ane limited to 26 , and leas. Check woureet of zupply for aviilability of lumber in lengthy geemtor than 20°.																			

[^0]: Skl发 8754 (R 09/9л)
 White-Issuing Jurisdiction Pink-DILHR Within 30 Days Yellow-Applicant

